wrap.spdk: Prepare Data on SPD Manifold of Fixed-Rank In Riemann: Learning with Data on Riemannian Manifolds

Description

When (p\times p) SPD matrices are of fixed-rank k < p, they form a geometric structure represented by (p\times k) matrices,

SPD(k,p) = \lbrace X \in \mathbf{R}^{(p\times p)}~\vert~ Y Y^\top = X, \textrm{rank}(X) = k \rbrace

It's key difference from \mathcal{S}_{++}^p is that all matrices should be of fixed rank k where k is usually smaller than p. Inputs are given as (p\times p) matrices with specified k and wrap.spdk automatically decomposes input square matrices into rank-k representation matrices.

Usage

 1 wrap.spdk(input, k) 

Arguments

 input data matrices to be wrapped as riemdata class. Following inputs are considered, arraya (p\times p\times n) array where each slice along 3rd dimension is a rank-k matrix. lista length-n list whose elements are (p\times p) matrices of rank-k. k rank of the SPD matrices.

Value

a named riemdata S3 object containing

data

a list of (p\times k) representation of the corresponding rank-k SPSD matrices.

size

size of each representation matrix.

name

name of the manifold of interests, "spdk"

References

\insertRef

journee_lowrank_2010Riemann

Examples

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 #------------------------------------------------------------------- # Checker for Two Types of Inputs #------------------------------------------------------------------- # Data Generation d1 = array(0,c(10,10,3)) d2 = list() for (i in 1:3){ dat = matrix(rnorm(10*10),ncol=10) d1[,,i] = stats::cov(dat) d2[[i]] = d1[,,i] } # Run test1 = wrap.spdk(d1, k=2) test2 = wrap.spdk(d2, k=2) 

Riemann documentation built on June 20, 2021, 5:07 p.m.