| wrap.sphere | R Documentation |
The unit hypersphere (sphere, for short) is one of the most fundamental curved space in studying geometry. Precisely, we denote (p-1) sphere in \mathbf{R}^p by
\mathcal{S}^{p-1} = \lbrace x \in \mathbf{R}^p ~ \vert ~ x^\top x = \|x\|^2 = 1 \rbrace
where vectors are of unit norm. In wrap.sphere, normalization is applied when
each data point is not on the unit sphere.
wrap.sphere(input)
input |
data vectors to be wrapped as
|
a named riemdata S3 object containing
a list of (p\times 1) matrices in \mathcal{S}^{p-1}.
dimension of the ambient space.
name of the manifold of interests, "sphere"
#-------------------------------------------------------------------
# Checker for Two Types of Inputs
#
# Generate 5 observations in S^2 embedded in R^3.
#-------------------------------------------------------------------
## DATA GENERATION
d1 = array(0,c(5,3))
d2 = list()
for (i in 1:5){
single = stats::rnorm(3)
d1[i,] = single
d2[[i]] = single
}
## RUN
test1 = wrap.sphere(d1)
test2 = wrap.sphere(d2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.