Nothing
SpecInciiChao2 <- function(data, k, conf){
data <- as.numeric(data)
z <- -qnorm((1 - conf)/2)
t <- data[1]
dat <- data[-1]
x <- dat[which(dat != 0)]
Q <- function(i, data){length(data[which(data == i)])}
basicInci <- function(data, k){
data <- as.numeric(data)
t <- data[1]
dat <- data[-1]
x <- dat[which(dat != 0)]
Q <- function(i, data){length(data[which(data == i)])}
D <- length(x)
D_infreq <- length(x[which(x <= k)])
if (Q(1, x) > 0 & Q(2, x) > 0){
A <- 2*Q(2, x)/((t-1)*Q(1, x) + 2*Q(2, x))
} else if (Q(1, x) > 0 & Q(2, x) == 0){
A <- 2/((t-1)*(Q(1, x) - 1) + 2)
} else {
A <- 1
}
C_infreq <- 1 - Q(1, x)/sum(x[which(x <= k)])*(1-A)
j <- c(1:k)
b1 <- sum(sapply(j, function(j)j*(j-1)*Q(j, x)))
b2 <- sum(sapply(j, function(j)j*Q(j, x)))
gamma_infreq_square <- max(D_infreq/C_infreq*t/(t - 1)*b1/b2/(b2) - 1, 0)
CV_infreq <- sqrt(gamma_infreq_square)
D_freq <- length(x[which(x > k)])
BASIC.DATA <- matrix(paste(c("D", "t", "k", "D_infreq", "C_infreq", "CV_infreq", "D_freq"),
c(D,t,k,D_infreq,C_infreq,CV_infreq,D_freq),
sep = "="), ncol=1)
colnames(BASIC.DATA)=c("Value")
rownames(BASIC.DATA)=c("Number of observed species","Number of sample/quadrats","Cut-off point",
"Number of observed species for infrequent species","Estimated sample coverage for infrequent species",
"Estimated CV for infrequent species",
"Number of observed species for frequent species")
return(list(BASIC.DATA, D, t, D_infreq, C_infreq, CV_infreq, D_freq))
}
D <- basicInci(data, k)[[2]]
D_infreq <- basicInci(data, k)[[4]]
C_infreq <- basicInci(data, k)[[5]]
CV_infreq <- basicInci(data, k)[[6]]
D_freq <- basicInci(data, k)[[7]]
q1 <- Q(1, x); q2 <- Q(2, x); q3 <- Q(3, x); q4 <- Q(4, x)
if (q1 > 0 & q2 != 0){
s_Chao2 <- D + (t - 1)/t*q1^2/(2*q2)
var_Chao2 <- q2*((t - 1)/t*(q1/q2)^2/2 + ((t - 1)/t)^2*(q1/q2)^3 + ((t - 1)/t)^2*(q1/q2)^4/4)
} else if (q1 > 1 & q2 == 0){
s_Chao2 <- D + (t - 1)/t*q1*(q1 - 1)/(2*(q2 + 1))
var_Chao2=(t-1)/t*q1*(q1 - 1)/2 + ((t - 1)/t)^2*q1*(2*q1-1)^2/4-((t-1)/t)^2*q1^4/4/s_Chao2
} else {
s_Chao2 <- D
i <- c(1:max(x))
i <- i[unique(x)]
var_obs <- sum(sapply(i, function(i)Q(i, x)*(exp(-i) - exp(-2*i)))) -
(sum(sapply(i, function(i)i*exp(-i)*Q(i, x))))^2/t
var_Chao2 <- var_obs
}
if (q4 != 0){
s_iChao2 <- s_Chao2 + (t - 3)/t*q3/4/q4*max(q1 - (t - 3)/(t - 1)*q2*q3/2/q4, 0)
} else {
s_iChao2 <- s_Chao2 + (t - 3)/t*q3/4/(q4 + 1)*max(q1 - (t - 3)/(t - 1)*q2*q3/2, 0)
}
diff <- function(q, x){ # fq
q1 <- Q(1, x); q2 <- Q(2, x); q3 <- Q(3, x); q4 <- Q(4, x)
if (q1 > 0 & q2 != 0){
if (q == 1){
d <- (t - 1)/t*q1/q2 - (t - 3)/t*q3/4/q4
} else if (q == 2){
d <- (t - 1)/t*q1^2/2/q2^2 - (t - 3)^2/t/(t - 1)*q3^2/8/q4^2
} else if (q == 3){
d <- (t - 3)/t*q1/4/q4
} else {
d <- -(t - 3)/t*q1*q3/4/q4^2 + (t - 3)^2/t/(t - 1)*q2*q3^2/4/q4^3
}
} else if (q1 > 1 & q2 == 0){
if (q == 1){
d <- (t - 1)/t*(2*q1 - 1)/2/(q2 + 1) + (t - 3)/t*q3/4/q4
} else if (q == 2){
d <- -(t - 1)/t*q1*(q1 - 1)/2/(q2 + 1)^2
} else if (q == 3){
d <- (t - 3)/t*q1/4/q4
} else {
d <- -(t - 3)/t*q1*q3/4/q4^2
}
} else {
d=0
}
return(d)
}
COV.q <- function(i,j){
if (i == j){
cov.q <- Q(i, x)*(1 - Q(i, x)/s_iChao2)
} else {
cov.q <- -Q(i, x)*Q(j, x)/s_iChao2
}
return(cov.q)
}
ind <- 1:4
i <- rep(sort(unique(ind)),each = length(unique(ind)))
j <- rep(sort(unique(ind)),length(unique(ind))) # all combination
# if (q1 - q2*q3/2/q4 > 0 & q3 != 0){
if (q1 - (t - 3)/(t - 1)*q2*q3/2/q4 > 0 |
q1 - (t - 3)/(t - 1)*q2*q3/2 > 0){
var_iChao2 <- sum(mapply(function(i, j)diff(i, x)*diff(j, x)*COV.q(i, j), i, j))
} else {
var_iChao2 <- var_Chao2
}
if (var_iChao2 > 0){
var_iChao2 <- var_iChao2
} else {
var_iChao2 <- NA
}
m <- round(s_iChao2 - D, 5)
if (is.nan(m) == F){
if (m != 0){
C <- exp(z*sqrt(log(1 + var_iChao2/(s_iChao2 - D)^2)))
CI_iChao2 <- c(D + (s_iChao2 - D)/C, D + (s_iChao2 - D)*C)
} else {
i <- c(1:max(x))
i <- i[unique(x)]
var_obs <- sum(sapply(i, function(i)Q(i, x)*(exp(-i) - exp(-2*i)))) -
(sum(sapply(i, function(i)i*exp(-i)*Q(i, x))))^2/t
var_iChao2 <- var_obs
P <- sum(sapply(i, function(i)Q(i, x)*exp(-i)/D))
CI_iChao2 <- c(max(D, D/(1 - P) - z*sqrt(var_obs)/(1 - P)), D/(1 - P) + z*sqrt(var_obs)/(1 - P))
}
}else{
CI_iChao2 <- c(NaN, NaN)
}
table <- matrix(c(s_iChao2, sqrt(var_iChao2), CI_iChao2), ncol = 4)
colnames(table) <- c("Estimate", "Est_s.e.", paste(conf*100,"% Lower Bound"), paste(conf*100,"% Upper Bound"))
rownames(table) <- "improved Chao2 (Chao, 1987)"
return(table)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.