View source: R/family.actuary.R
betaII | R Documentation |
Maximum likelihood estimation of the 3-parameter beta II distribution.
betaII(lscale = "loglink", lshape2.p = "loglink",
lshape3.q = "loglink", iscale = NULL, ishape2.p = NULL,
ishape3.q = NULL, imethod = 1,
gscale = exp(-5:5), gshape2.p = exp(-5:5),
gshape3.q = seq(0.75, 4, by = 0.25),
probs.y = c(0.25, 0.5, 0.75), zero = "shape")
lscale , lshape2.p , lshape3.q |
Parameter link functions applied to the
(positive) parameters |
iscale , ishape2.p , ishape3.q , imethod , zero |
See |
gscale , gshape2.p , gshape3.q |
See |
probs.y |
See |
The 3-parameter beta II is the 4-parameter
generalized beta II distribution with shape parameter a=1
.
It is also known as the Pearson VI distribution.
Other distributions which are special cases of the 3-parameter
beta II include the Lomax (p=1
) and inverse Lomax
(q=1
). More details can be found in Kleiber and Kotz
(2003).
The beta II distribution has density
f(y) = y^{p-1} / [b^p B(p,q) \{1 + y/b\}^{p+q}]
for b > 0
, p > 0
, q > 0
, y \geq 0
.
Here, b
is the scale parameter scale
,
and the others are shape parameters.
The mean is
E(Y) = b \, \Gamma(p + 1) \,
\Gamma(q - 1) / (\Gamma(p) \, \Gamma(q))
provided q > 1
; these are returned as the fitted values.
This family function handles multiple responses.
An object of class "vglmff"
(see vglmff-class
).
The object is used by modelling functions
such as vglm
,
and vgam
.
See the notes in genbetaII
.
T. W. Yee
Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences, Hoboken, NJ, USA: Wiley-Interscience.
betaff
,
genbetaII
,
dagum
,
sinmad
,
fisk
,
inv.lomax
,
lomax
,
paralogistic
,
inv.paralogistic
.
bdata <- data.frame(y = rsinmad(2000, shape1.a = 1,
shape3.q = exp(2), scale = exp(1))) # Not genuine data!
# fit <- vglm(y ~ 1, betaII, data = bdata, trace = TRUE)
fit <- vglm(y ~ 1, betaII(ishape2.p = 0.7, ishape3.q = 0.7),
data = bdata, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)
summary(fit)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.