Biamhcop | R Documentation |
Density, distribution function, and random generation for the (one parameter) bivariate Ali-Mikhail-Haq distribution.
dbiamhcop(x1, x2, apar, log = FALSE)
pbiamhcop(q1, q2, apar)
rbiamhcop(n, apar)
x1 , x2 , q1 , q2 |
vector of quantiles. |
n |
number of observations.
Same as |
apar |
the association parameter. |
log |
Logical.
If |
See biamhcop
, the VGAM
family functions for estimating the
parameter by maximum likelihood estimation, for the formula of
the cumulative distribution function and other details.
dbiamhcop
gives the density,
pbiamhcop
gives the distribution function, and
rbiamhcop
generates random deviates (a two-column matrix).
T. W. Yee and C. S. Chee
biamhcop
.
x <- seq(0, 1, len = (N <- 101)); apar <- 0.7
ox <- expand.grid(x, x)
zedd <- dbiamhcop(ox[, 1], ox[, 2], apar = apar)
## Not run:
contour(x, x, matrix(zedd, N, N), col = "blue")
zedd <- pbiamhcop(ox[, 1], ox[, 2], apar = apar)
contour(x, x, matrix(zedd, N, N), col = "blue")
plot(r <- rbiamhcop(n = 1000, apar = apar), col = "blue")
par(mfrow = c(1, 2))
hist(r[, 1]) # Should be uniform
hist(r[, 2]) # Should be uniform
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.