R/pobs.R

Defines functions EmpCDF pobs

Documented in EmpCDF pobs

#' Pseudo-Observations
#'
#' Compute the pseudo-observations for the given data matrix.
#'
#' Given \eqn{n} realizations
#' \eqn{\bm{x}_i=(x_{i1},\dots,x_{id})^T}{x_i=(x_{i1},...,x_{id})},
#' \eqn{i\in\{1,\dots,n\}}{i in {1,...,n}} of a random vector \eqn{\bm{X}}{X},
#' the pseudo-observations are defined via \eqn{u_{ij}=r_{ij}/(n+1)} for
#' \eqn{i\in\{1,\dots,n\}}{i in {1,...,n}} and \eqn{j\in\{1,\dots,d\}}{j in
#' {1,...,d}}, where \eqn{r_{ij}} denotes the rank of \eqn{x_{ij}} among all
#' \eqn{x_{kj}}, \eqn{k\in\{1,\dots,n\}}{k in {1,...,n}}.  The
#' pseudo-observations can thus also be computed by component-wise applying the
#' empirical distribution functions to the data and scaling the result by
#' \eqn{n/(n+1)}.  This asymptotically negligible scaling factor is used to
#' force the variates to fall inside the open unit hypercube, for example, to
#' avoid problems with density evaluation at the boundaries. Note that
#' `pobs(, lower.tail=FALSE)` simply returns `1-pobs()`.
#'
#' @name pobs
#' @param x \eqn{n\times d}{n x d}-matrix of random variates to be converted to
#' pseudo-observations.
#' @param na.last,ties.method are passed to [rank()]; see there.
#' @param lower.tail [logical()] which, if `FALSE`, returns the
#' pseudo-observations when applying the empirical marginal survival functions.
#' @return matrix of the same dimensions as `x` containing the
#' pseudo-observations.
#'
#' @note This function is adapted from the `copula` package.
#'
#' @author Marius Hofert, Thomas Nagler
#' @examples
#'
#' ## Simple definition of the function:
#' pobs
#'
#' ## simulate data from a multivariate normal distribution
#' library(mvtnorm)
#' set.seed(123)
#' Sigma <- matrix(c(2, 1, -0.2, 1, 1, 0.3, -0.2, 0.3, 0.5), 3, 3)
#' mu <- c(-3, 2, 1)
#' dat <- rmvnorm(500, sigma = Sigma)
#' pairs(dat)  # plot observations
#'
#' ## compute pseudo-observations for copula inference
#' udat <- pobs(dat)
#' pairs(udat)
#' # estimate vine copula model
#' fit <- RVineStructureSelect(udat, familyset = c(1, 2))
#'
pobs <- function(x, na.last = "keep",
                 ties.method = eval(formals(rank)$ties.method),
                 lower.tail = TRUE) {
    ties.method <- match.arg(ties.method)
    U <- if (!is.null(dim(x))) {
        R <- apply(x, 2, rank, na.last = na.last, ties.method = ties.method)
        apply(R, 2, function(x) x / (sum(!is.na(x)) + 1))
    } else {
        rank(x, na.last = na.last, ties.method = ties.method) /
            (sum(!is.na(x)) + 1)
    }
    if (inherits(x, "zoo"))
        attributes(U) <- attributes(x)
    if (lower.tail)
        U
    else 1 - U
}

#' Corrected Empirical CDF
#'
#' The empirical CDF with tail correction, ensuring that its output is never
#' 0 or 1.
#'
#' @details The corrected empirical CDF is defined as
#' \deqn{
#' F_n(x) = \frac{1}{n + 1} \min\biggl\{1, \sum_{i = 1}^n 1(X_i \le x)\biggr\}
#' }
#'
#' @param x numeric vector of observations
#'
#' @return A function with signature `function(x)` that returns \eqn{F_n(x)}.
#'
#' @examples
#' # fit ECDF on simulated data
#' x <- rnorm(100)
#' cdf <- EmpCDF(x)
#'
#' # output is bounded away from 0 and 1
#' cdf(-50)
#' cdf(50)
EmpCDF <- function(x) {
    stopifnot(is.numeric(x))
    n <- length(x)
    Fn <- ecdf(x)
    function(xx) pmax(n * Fn(xx), 1) / (n + 1)
}

Try the VineCopula package in your browser

Any scripts or data that you put into this service are public.

VineCopula documentation built on Sept. 11, 2024, 5:26 p.m.