Nothing
### actuar: Actuarial Functions and Heavy Tailed Distributions
###
### Quantiles (inverse of the ogive) for grouped data
###
### AUTHOR: Vincent Goulet <vincent.goulet@act.ulaval.ca>
### Walter Garcia-Fontes
quantile.grouped.data <- function(x, probs = seq(0, 1, 0.25),
names = TRUE, ...)
{
## We keep the first frequencies column only; group boundaries are
## in the environment of 'x'
y <- x[, 2L]
x <- eval(expression(cj), envir = environment(x))
## Inverse of the ogive
fun <- approxfun(c(0, cumsum(y))/sum(y), x,
yleft = min(x), yright = max(x),
method = "linear", ties = "ordered")
## Quantiles
res <- fun(probs)
if (names)
{
dig <- max(2, getOption("digits"))
names(res) <- formatC(paste(100 * probs, "%", sep = ""),
format = "fg", width = 1, digits = dig)
}
res
}
summary.grouped.data <- function(object, ...)
{
## Keep only the first frequencies column
object <- object[1L:2L]
res <- quantile(object)
res <- c(res[1L:3L], mean(object), res[4L:5L])
names(res) <- c("Min.", "1st Qu.", "Median", "Mean", "3rd Qu.", "Max.")
class(res) <- c("summaryDefault", "table")
res
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.