R/colorQuantiles.R

Defines functions plotColorQuantiles colorQuantiles .formatClosestMunsell

Documented in colorQuantiles plotColorQuantiles

# simple wrapper around col2Munsell(..., space = 'CIELAB')
# closest Munsell chip to LAB coordinates and error
# sigma is dE00 
.formatClosestMunsell <- function(lab) {
  res <- col2Munsell(lab, space = 'CIELAB', nClosest = 1)
  res.txt <- sprintf("%s %s/%s\n(%.3f)", res$hue, res$value, res$chroma, res$sigma)
  return(res.txt)
}



## TODO: quantiles should be weighted by thickness, can we do this via dice()?
## TODO: finish documentation + links
## TODO: consider a third output: chip with pair-wise min(dE00) within distance matrix

#' @title Soil Color Range via Quantiles
#'
#' @param soilColors vector of R colors (sRGB colorspace)
#' @param p marginal quantiles of interest
#'
#' @description Estimate central tendency and spread of soil color using marginal quantiles and L1 median of CIELAB coordinates.
#' 
#' @details Colors are converted from sRGB to CIELAB (D65 illuminant), marginal quantiles of (L,A,B) coordinates are estimated, and L1 median (L,A,B) is estimates. The closest Munsell chips (via Munsell/CIELAB lookup table provided by `munsell`) and R colors are determined by locating chips closest to the marginal quantiles and L1 median.
#' 
#' The results can be conveniently inspected using [plotColorQuantiles()].
#' 
#' @author D.E. Beaudette
#' 
#' @return A List containing the following elements:
#' 
#'   * `marginal`: `data.frame` containing marginal quantiles in CIELAB (D65), closest Munsell chips, and dE00
#'   * `L1`: L1 median CIELAB (D65) values, closest Munsell chip, and dE00
#' 
#' @export
#'
#' @examples
#' 
#'\dontrun{
#' # example data, see manual page for details
#' data(sp5)
#' 
#' # slice top 25 cm
#' # 24-25cm is the last slice
#' s <- dice(sp5, 0:24 ~ .)
#' 
#' # check some of the data
#' par(mar=c(0,0,0,0))
#' plotSPC(sample(s, 25), divide.hz = FALSE, name = '', print.id = FALSE, width = 0.5)
#' 
#' # colors
#' previewColors(unique(s$soil_color))
#' 
#' # compute marginal quantiles and L1 median
#' cq <- colorQuantiles(s$soil_color)
#' 
#' # simple graphical display of results
#' plotColorQuantiles(cq)
#' }
#' 
colorQuantiles <- function(soilColors, p = c(0.05, 0.5, 0.95)) {

  # sanity check, need this for L1 median
  if(!requireNamespace('Gmedian')) {
    stop('package `Gmedian` is required', call. = FALSE)
  }
    

  # hex representation -> sRGB
  soilColors.srgb <- t(col2rgb(soilColors)) / 255
  
  # sRGB -> CIE LAB
  soilColors.lab <- convertColor(soilColors.srgb, from = 'sRGB', to = 'Lab', from.ref.white = 'D65', to.ref.white = 'D65', clip = FALSE)
  
  # convert to DF for use in diana
  soilColors.lab <- as.data.frame(soilColors.lab)
  names(soilColors.lab) <- c('L', 'A', 'B')

  # marginal quantiles
  q.L <- quantile(soilColors.lab$L, probs = p, na.rm = TRUE)
  q.A <- quantile(soilColors.lab$A, probs = p, na.rm = TRUE)
  q.B <- quantile(soilColors.lab$B, probs = p, na.rm = TRUE)

  # find observed color with the closest L-coordinate, linear distances
  L.q.idx <- c(
    which.min(sqrt((q.L[1] - soilColors.lab$L) ^ 2)),
    which.min(sqrt((q.L[2] - soilColors.lab$L) ^ 2)),
    which.min(sqrt((q.L[3] - soilColors.lab$L) ^ 2))
  )

  # find observed color with the closest A-coordinate, linear distances
  A.q.idx <- c(
    which.min(sqrt((q.A[1] - soilColors.lab$A) ^ 2)),
    which.min(sqrt((q.A[2] - soilColors.lab$A) ^ 2)),
    which.min(sqrt((q.A[3] - soilColors.lab$A) ^ 2))
  )

  # find observed color with the closest B-coordinate, linear distances
  B.q.idx <- c(
    which.min(sqrt((q.B[1] - soilColors.lab$B) ^ 2)),
    which.min(sqrt((q.B[2] - soilColors.lab$B) ^ 2)),
    which.min(sqrt((q.B[3] - soilColors.lab$B) ^ 2))
  )

  # L1 median
  # close to but not actually an obs within original data... why?
  # this is sometimes quite distant from marginal medians... why?
  L1 <- Gmedian::Gmedian(soilColors.lab, nstart = 10)

  ## find closest Munsell chips via CIE LAB coordinates
  # this is the closest Munsell chip to the L1 median color
  L1.closest <- .formatClosestMunsell(L1)

  # closest munsell chip to marginal L,A,B quantiles
  L.closest <- .formatClosestMunsell(soilColors.lab[L.q.idx, ])
  A.closest <- .formatClosestMunsell(soilColors.lab[A.q.idx, ])
  B.closest <- .formatClosestMunsell(soilColors.lab[B.q.idx, ])


  ## find closest observed color to L1 median via CIE2000 distance metric
  ## requires farver >= 2.0.3
  if( !requireNamespace('farver', quietly = TRUE) || packageVersion("farver") < '2.0.3' ) {
    message('CIE2000 comparisons require `farver` version 2.0.3 or greater, using Euclidean distance in CIELAB instead', call.=FALSE)
    d <- farver::compare_colour(from=L1, to=soilColors.lab, from_space='lab', method = 'cie2000')
  } else {
    # backup plan using Euclidean distance in CIELAB
    d <- sqrt(rowSums(sweep(soilColors.lab, MARGIN = 2, STATS=L1, FUN = '-')^2))
  }


  # assign L1 color
  L1.color <- soilColors[which.min(d)]

  # closest observed colors to marginal quantiles
  q.L.colors <- soilColors[L.q.idx]
  q.A.colors <- soilColors[A.q.idx]
  q.B.colors <- soilColors[B.q.idx]

  # marginal quantiles
  q.L.values <- soilColors.lab$L[L.q.idx]
  q.A.values <- soilColors.lab$A[A.q.idx]
  q.B.values <- soilColors.lab$B[B.q.idx]


  # combine into single DF for plotting
  res <- list(
    marginal = data.frame(
      p = p,
      L = q.L.values,
      A = q.A.values,
      B = q.B.values,
      L_colors = q.L.colors,
      A_colors = q.A.colors,
      B_colors = q.B.colors,
      L_chip = L.closest,
      A_chip = A.closest,
      B_chip = B.closest,
      stringsAsFactors = FALSE
    ),
    L1 = data.frame(
      p = 0.5,
      L = L1[, 1],
      A = L1[, 2],
      B = L1[, 3],
      L1_color = L1.color,
      L1_chip = L1.closest,
      stringsAsFactors = FALSE
    )
  )

  return(res)

}


#' @title Visualize Color Quantiles
#' 
#' @description This function creates a visualization of the output from \code{colorQuantiles} using lattice graphics.
#' 
#' @param res list returned by \code{colorQuantiles}
#' @param pt.cex scaling factor for color chips
#' @param lab.cex chip label scaling factor
#'
#' @return a `lattice` graphics object
#' 
#' @details Marginal percentiles and L1 median CIELAB values from `colorQuantiles()` are combined into a single plot, arranged in panels according to L, A, and B coordinates. Munsell "chips" (colors and labels) are based on the closest Munsell color found via [col2Munsell()]. 
#' 
#' @author D.E. Beaudette
#'
#' @export
#' 
#' 
plotColorQuantiles <- function(res, pt.cex = 7, lab.cex = 0.66) {
  
  # convert wide -> long format for plotting in panels
  # using data.table::melt()
  m.long <- melt(
    data.table::as.data.table(res$marginal), 
    id.var = c('p', 'L_colors', 'A_colors', 'B_colors', 'L_chip', 'A_chip', 'B_chip')
    )
  
  # convert back to data.frame
  m.long <- as.data.frame(m.long)
  
  # fake y-variable for plotting marginal vs. L1
  m.long$y <- 1
  
  # local copy and fake y-variable
  L1 <- res$L1
  L1$y <- 2
  
  # panel labels
  m.long$variable <- factor(m.long$variable, levels = c('L', 'A', 'B'), labels = c('CIELAB L-Coordinate', 'CIELAB A-Coordinate', 'CIELAB B-Coordinate'))
  
  # sub text for marginal qualiles
  p.percentiles <- round(unique(res$marginal$p) * 100)
  p.text <- sprintf("%sth", p.percentiles)
  
  p.sub <- sprintf(
    "%s Percentiles",
    paste(p.text, collapse = ", ")
  )
  
  
  # compose figure
  pp <- lattice::xyplot(
    y ~ value | variable, 
    data = m.long, 
    ylim = c(0.5, 2.5),
    xlab = '',
    ylab = '',
    sub = p.sub,
    layout = c(1, 3),
    scales = list(
      y = list(at = c(1, 2), labels = c('Marginal P', 'L1 Median'), alternating = 1), 
      x = list(relation = 'free', tick.number = 10, alternating = 1)
    ),
    as.table = TRUE,
    subscripts = TRUE,
    strip = lattice::strip.custom(bg = grey(0.85)),
    panel = function(x, y, subscripts = subscripts, ...) {
      # local copy
      d <- m.long[subscripts, ]
      
      # panel number tracks levels of L, A, B
      pn <- lattice::panel.number()
      
      # index current colors
      col.idx <- c('L_colors', 'A_colors', 'B_colors')[pn]
      cols <- d[[col.idx]]
      
      # index current chip labels
      chip.idx <- c('L_chip', 'A_chip', 'B_chip')[pn]
      chip <- d[[chip.idx]]
      
      # horizontal grid lines
      panel.abline(h = c(1, 2), col = grey(0.65))
      
      # marginal data
      lattice::panel.points(x = d$value, y = d$y, pch = 15, cex = pt.cex, col = cols)
      lattice::panel.text(x = d$value, y = d$y, label = chip, col = invertLabelColor(cols), cex = lab.cex, font = 2)
      
      # L1 data: these are constant across panels
      # index specific coordinate
      LAB.idx <- which(names(L1) %in% c('L', 'A', 'B'))
      coord.idx <- LAB.idx[pn]
      
      lattice::panel.points(x = L1[[coord.idx]], y = L1$y, pch = 15, cex = pt.cex, col = L1$L1_color)
      lattice::panel.text(x = L1[[coord.idx]], y = L1$y, label = L1$L1_chip, col = invertLabelColor(L1$L1_color), cex = lab.cex, font = 2)
    }
  )
  
  
  return(pp)
}



## old version, base graphics and kind of a hack
# plotColorQuantiles <- function(res, pt.cex=7, title='', mar=c(2,1.5,1,1)) {
#   par(mar=mar, mfrow=c(3,1))
#   
#   # vertical spacing
#   m.y <- 2
#   L1.y <- 1
#   y.lim <- c(0.5, 2.5)
#   
#   # pre-make axis
#   L.axis <- pretty(zapsmall(res$marginal$L), n = 10)
#   A.axis <- pretty(zapsmall(res$marginal$A), n = 10)
#   B.axis <- pretty(zapsmall(res$marginal$B), n = 10)
#   
#   ## L coordinates
#   plot(res$marginal$L, rep(m.y, times=3), pch=22, bg=res$marginal$L_colors, cex=pt.cex, xlim=range(L.axis), ylim=y.lim, axes=FALSE, xlab='', ylab='', main=title, col.main=par('fg'))
#   points(res$L1$L, L1.y, pch=22, bg=res$L1$L1_color, cex=pt.cex)
#   text(res$marginal$L, rep(m.y, times=3), labels = res$marginal$p, pos = 3, offset = 1.5)
#   text(res$L1$L, L1.y, labels = 'L1', pos = 3, offset = 1.5)
#   text(res$marginal$L, rep(m.y, times=3), res$marginal$L_chip, pos=1, offset = 1.5)
#   text(res$L1$L, L1.y, labels = res$L1$L1_chip, pos = 2, offset = 1.5)
#   axis(1, line = -2, at = L.axis, col.axis=par('fg'))
#   mtext('L', side = 2, line=-0.125, font=2, las=1)
#   # title('CIELAB Color Space', cex=1.5, line=-1)
#   
#   ## A coordinates
#   plot(res$marginal$A, rep(m.y, times=3), pch=22, bg=res$marginal$A_colors, cex=pt.cex, xlim=range(A.axis), ylim=y.lim, axes=FALSE, xlab='', ylab='')
#   points(res$L1$A, L1.y, pch=22, bg=res$L1$L1_color, cex=pt.cex)
#   text(res$marginal$A, rep(m.y, times=3), labels = res$marginal$p, pos = 3, offset = 1.5)
#   text(res$L1$A, L1.y, labels = 'L1', pos = 3, offset = 1.5)
#   text(res$marginal$A, rep(m.y, times=3), res$marginal$A_chip, pos=1, offset = 1.5)
#   text(res$L1$A, L1.y, labels = res$L1$L1_chip, pos = 2, offset = 1.5)
#   axis(1, line = -2, at=A.axis, col.axis=par('fg'))
#   mtext('A', side = 2, line=-0.125, font=2, las=1)
#   
#   plot(res$marginal$B, rep(m.y, times=3), pch=22, bg=res$marginal$B_colors, cex=pt.cex, xlim=range(B.axis), ylim=y.lim, axes=FALSE, xlab='', ylab='')
#   points(res$L1$B, L1.y, pch=22, bg=res$L1$L1_color, cex=pt.cex)
#   text(res$marginal$B, rep(m.y, times=3), labels = res$marginal$p, pos = 3, offset = 1.5)
#   text(res$L1$B, L1.y, labels = 'L1', pos = 3, offset = 1.5)
#   text(res$marginal$B, rep(m.y, times=3), res$marginal$B_chip, pos=1, offset = 1.5)
#   text(res$L1$B, L1.y, labels = res$L1$L1_chip, pos = 2, offset = 1.5)
#   axis(1, line = -2, at=B.axis, col.axis=par('fg'))
#   mtext('B', side = 2, line=-0.125, font=2, las=1)
#   
#   
# }

Try the aqp package in your browser

Any scripts or data that you put into this service are public.

aqp documentation built on Sept. 11, 2024, 7:11 p.m.