Description Usage Arguments Value References See Also Examples
View source: R/Gaussian_Inference.r
Generate random samples from the posterior predictive distribution of the following structure:
x \sim Gaussian(mu,Sigma)
Sigma \sim InvWishart(v,S)
mu is known. Gaussian() is the Gaussian distribution. See ?dGaussian
and ?dInvWishart
for the definition of the distributions.
The model structure and prior parameters are stored in a "GaussianInvWishart" object.
Posterior predictive is a distribution of x|v,S,mu.
1 2 | ## S3 method for class 'GaussianInvWishart'
rPosteriorPredictive(obj, n, ...)
|
obj |
A "GaussianInvWishart" object. |
n |
integer, number of samples. |
... |
Additional arguments to be passed to other inherited types. |
A matrix of n rows, each row is a sample.
Gelman, Andrew, et al. Bayesian data analysis. CRC press, 2013.
MARolA, K. V., JT KBNT, and J. M. Bibly. Multivariate analysis. AcadeInic Press, Londres, 1979.
GaussianInvWishart
, dPosteriorPredictive.GaussianInvWishart
1 2 3 4 5 6 7 | obj <- GaussianInvWishart(gamma=list(mu=c(-1.5,1.5),v=3,S=diag(2)))
x <- rGaussian(100,mu = c(-1.5,1.5),Sigma = matrix(c(0.1,0.03,0.03,0.1),2,2))
ss <- sufficientStatistics(obj=obj,x=x,foreach = FALSE)
## use x to update the prior informatoin
posterior(obj=obj,ss = ss)
## use the posterior to generate new samples
rPosteriorPredictive(obj = obj,n=20)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.