Nothing
setClass('BiclustMethod',
representation = representation('VIRTUAL',
biclustFunction = 'function'))
setGeneric('biclust', function(x,method, ...){standardGeneric('biclust')})
setMethod('biclust', c('matrix','BiclustMethod'),
function(x,method, ...) {
MYCALL<-match.call()
ret<-method@biclustFunction(x,...)
#ret@Parameters<-c(list(Call=MYCALL,Data=x,Method=method),list(...))
ret@Parameters<-c(list(Call=MYCALL,Method=method))
return(ret)
})
setMethod('biclust', c('matrix','function'),
function(x,method, ...) {
method <- method()
biclust(x,method, ...)
})
setMethod('biclust', c('matrix','character'),
function(x,method, ...) {
method <- get(method[1], mode="function")
biclust(x,method, ...)
})
setClass('Biclust',
representation = representation(
Parameters = 'list',
RowxNumber = 'matrix',
NumberxCol = 'matrix',
Number = 'numeric',
info = 'list')
)
BiclustResult <- function(mypara, a, b, c, d) {
return(new('Biclust', Parameters=mypara, RowxNumber=a, NumberxCol=b, Number=c, info=d))
}
setClass('BCBimax',
contains = 'BiclustMethod',
prototype = prototype(
biclustFunction = function(x,minr=2,minc=2,number=100){bimaxbiclust(x,minr,minc,number)}))
BCBimax <- function() {
return(new('BCBimax'))
}
setClass('BCrepBimax',
contains = 'BiclustMethod',
prototype = prototype(
biclustFunction = function(x,minr=2,minc=2,number=100,maxc=12){repbimaxbiclust(x,minr,minc,number,maxc)}))
BCrepBimax <- function() {
return(new('BCrepBimax'))
}
setClass('BCXmotifs',
contains = 'BiclustMethod',
prototype = prototype(
biclustFunction = function(x,ns=10,nd=10,sd=5,alpha=0.05,number=10){xmotifbiclust(x,ns,nd,sd,alpha,number)}))
BCXmotifs <- function() {
return(new('BCXmotifs'))
}
setClass('BCCC',
contains = 'BiclustMethod',
prototype = prototype(
biclustFunction = function(x,delta=1.0,alpha=1.5,number=100){ccbiclust(x,delta,alpha,number)}))
BCCC <- function() {
return(new('BCCC'))
}
setClass('BCSpectral',
contains = 'BiclustMethod',
prototype = prototype(
biclustFunction = function(x,normalization="log",numberOfEigenvalues=3,minr=2, minc=2, withinVar=1)
{spectral(x,normalization, numberOfEigenvalues, minr, minc, withinVar)}))
BCSpectral <- function() {
return(new('BCSpectral'))
}
setClass('BCPlaid',
contains = 'BiclustMethod',
prototype = prototype(
biclustFunction = function(x, cluster="b", fit.model= ~ m + a + b, background=TRUE, background.layer=NA, background.df=1, row.release=0.7,col.release=0.7,shuffle=3, back.fit=2,max.layers=10,iter.startup=5,iter.layer=30, verbose=TRUE)
{plaid(x, cluster, fit.model, background, background.layer, background.df, row.release, col.release, shuffle, back.fit, max.layers, iter.startup, iter.layer, verbose) }))
BCPlaid <- function() {
return(new('BCPlaid'))
}
setClass('BCQuest',
contains = 'BiclustMethod',
prototype = prototype(
biclustFunction = function(x,ns=10,nd=10,sd=5,alpha=0.05,number=10){questmotif(x,ns,nd,sd,alpha,number)}))
BCQuest <- function() {
return(new('BCQuest'))
}
setClass('BCQuestord',
contains = 'BiclustMethod',
prototype = prototype(
biclustFunction = function(x,d=1,ns=10,nd=10,sd=5,alpha=0.05,number=10){questordmotif(x,d,ns,nd,sd,alpha,number)}))
BCQuestord <- function() {
return(new('BCQuestord'))
}
setClass('BCQuestmet',
contains = 'BiclustMethod',
prototype = prototype(
biclustFunction = function(x,quant=0.25,vari=1,ns=10,nd=10,sd=5,alpha=0.05,number=10){questmetmotif(x,quant,vari,ns,nd,sd,alpha,number)}))
BCQuestmet <- function() {
return(new('BCQuestmet'))
}
###**show and summary*******************************
setMethod("show", "Biclust",
function(object)
{
cat("\nAn object of class",class(object),"\n\n")
cat("call:", deparse(object@Parameters$Call,0.75*getOption("width")),
sep="\n\t")
n<-object@Number
n<-min(c(n,5))
if(n>1)
{
cat("\nNumber of Clusters found: ",object@Number, "\n")
cat("\nFirst ",n," Cluster sizes:\n")
rowcolsizes<-rbind(colSums(object@RowxNumber[,1:n]),rowSums(object@NumberxCol[1:n,]))
rownames(rowcolsizes)<-c("Number of Rows:","Number of Columns:")
colnames(rowcolsizes)<-paste("BC", 1:n)
#print.default(format(rowcolsizes, print.gap = 2, quote = FALSE))
print(rowcolsizes)
}
else
{
if(n==1) cat("\nThere was one cluster found with\n ",sum(object@RowxNumber[,1]), "Rows and ", sum(object@NumberxCol), "columns")
if(n==0) cat("\nThere was no cluster found")
}
cat("\n\n")
})
setGeneric("summary")
setMethod("summary", "Biclust",
function(object)
{
cat("\nAn object of class",class(object),"\n\n")
cat("call:", deparse(object@Parameters$Call,0.75*getOption("width")),
sep="\n\t")
n<-object@Number
if(n>1)
{
cat("\nNumber of Clusters found: ",object@Number, "\n")
cat("\nCluster sizes:\n")
rowcolsizes<-rbind(colSums(object@RowxNumber[,1:n]),rowSums(object@NumberxCol[1:n,]))
rownames(rowcolsizes)<-c("Number of Rows:","Number of Columns:")
colnames(rowcolsizes)<-paste("BC", 1:n)
#print.default(format(rowcolsizes, print.gap = 2, quote = FALSE))
print(rowcolsizes)
}
else
{
if(n==1) cat("\nThere was one cluster found with\n ",sum(object@RowxNumber[,1]), "Rows and ", sum(object@NumberxCol), "columns")
if(n==0) cat("\nThere was no cluster found")
}
cat("\n\n")
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.