Nothing
#-- conditional independence tests --------------------------------------------#
available.discrete.tests = c("mi", "mi-sh", "x2", "mc-mi", "smc-mi", "mi-adf",
"x2-adf", "mc-x2", "smc-x2", "sp-mi", "sp-x2")
available.ordinal.tests = c("jt", "mc-jt", "smc-jt")
available.continuous.tests = c("cor", "zf", "mi-g", "mi-g-sh", "mc-mi-g",
"smc-mi-g", "mc-cor", "smc-cor", "mc-zf", "smc-zf")
available.mixedcg.tests = c("mi-cg")
available.omnibus.tests = c("custom-test")
available.tests = c(available.discrete.tests, available.ordinal.tests,
available.continuous.tests, available.mixedcg.tests, available.omnibus.tests)
semiparametric.tests = c("sp-mi", "sp-x2")
resampling.tests = c("mc-mi", "smc-mi", "mc-x2", "smc-x2", "mc-mi-g",
"smc-mi-g", "mc-cor", "smc-cor", "mc-zf", "smc-zf", "mc-jt", "smc-jt",
semiparametric.tests)
asymptotic.tests = c("mi", "mi-adf", "mi-g", "x2", "x2-adf", "zf", "jt",
"mi-sh", "mi-g-sh", "mi-cg")
test.labels = c(
"mi" = "Mutual Information (disc.)",
"mi-adf" = "Mutual Information (disc., adj. d.f.)",
"mi-sh" = "Mutual Information (disc., shrink.)",
"mc-mi" = "Mutual Information (disc., MC)",
"smc-mi" = "Mutual Information (disc., Seq. MC)",
"sp-mi" = "Mutual Information (disc., semipar.)",
"mi-g" = "Mutual Information (Gauss.)",
"mi-g-sh" = "Mutual Information (Gauss., shrink.)",
"mc-mi-g" = "Mutual Information (Gauss., MC)",
"smc-mi-g" = "Mutual Information (Gauss., Seq. MC)",
"mi-cg" = "Mutual Information (cond. Gauss.)",
"x2" = "Pearson's X^2",
"x2-adf" = "Pearson's X^2 (adj. d.f.)",
"mc-x2"= "Pearson's X^2 (MC)",
"smc-x2"= "Pearson's X^2 (Seq. MC)",
"sp-x2"= "Pearson's X^2 (semipar.)",
"jt" = "Jonckheere-Terpstra",
"mc-jt" = "Jonckheere-Terpstra (MC)",
"smc-jt" = "Jonckheere-Terpstra (Seq. MC)",
"cor" = "Pearson's Correlation",
"mc-cor" = "Pearson's Correlation (MC)",
"smc-cor" = "Pearson's Correlation (Seq. MC)",
"zf" = "Fisher's Z",
"mc-zf" = "Fisher's Z (MC)",
"smc-zf" = "Fisher's Z (Seq. MC)",
"custom-test" = "User-Provided Test Function"
)
test.extra.args = list(
"mi" = character(0),
"mi-adf" = character(0),
"mi-sh" = character(0),
"mc-mi" = c("B"),
"smc-mi" = c("B"),
"sp-mi" = c("B"),
"mi-g" = character(0),
"mi-g-sh" = character(0),
"mc-mi-g" = c("B"),
"smc-mi-g" = c("B"),
"mi-cg" = character(0),
"x2" = character(0),
"x2-adf" = character(0),
"mc-x2"= c("B"),
"smc-x2"= c("B"),
"sp-x2"= c("B"),
"jt" = character(0),
"mc-jt" = c("B"),
"smc-jt" = c("B"),
"cor" = character(0),
"mc-cor" = c("B"),
"smc-cor" = c("B"),
"zf" = character(0),
"mc-zf" = c("B"),
"smc-zf" = c("B"),
"custom-test" = c("fun", "args")
)
#-- network scores ------------------------------------------------------------#
available.discrete.bayesian.scores =
c("bde", "bds", "bdj", "k2", "mbde", "bdla")
available.discrete.scores =
c("loglik", "aic", "bic", "ebic", "pred-loglik", "fnml", "qnml", "nal",
"pnal", available.discrete.bayesian.scores)
available.continuous.bayesian.scores = c("bge")
available.continuous.scores =
c("loglik-g", "aic-g", "bic-g", "ebic-g", "pred-loglik-g", "nal-g", "pnal-g",
available.continuous.bayesian.scores)
available.mixedcg.scores =
c("loglik-cg", "aic-cg", "bic-cg", "ebic-cg", "pred-loglik-cg", "nal-cg",
"pnal-cg")
available.omnibus.scores = c("custom-score")
available.scores = c(available.discrete.scores, available.continuous.scores,
available.mixedcg.scores, available.omnibus.scores)
scores.for.incomplete.data =
c("custom-score", "nal", "pnal", "nal-g", "pnal-g", "nal-cg", "pnal-cg")
score.labels = c(
"k2" = "Cooper & Herskovits' K2",
"bde" = "Bayesian Dirichlet (BDe)",
"bds" = "Bayesian Dirichlet Sparse (BDs)",
"bdj" = "Bayesian Dirichlet, Jeffrey's prior",
"mbde" = "Bayesian Dirichlet (interventional data)",
"bdla" = "Bayesian Dirichlet, Locally Averaged",
"aic" = "AIC (disc.)",
"bic" = "BIC (disc.)",
"ebic" = "eBIC (disc.)",
"loglik" = "Log-Likelihood (disc.)",
"pred-loglik" = "Predictive Log-Likelihood (disc.)",
"fnml" = "Factorized Normalized Maximum Likelihood",
"qnml" = "Quotient Normalized Maximum Likelihood",
"nal" = "Node-Average Likelihood (disc.)",
"pnal" = "Penalized Node-Average Likelihood (disc.)",
"bge" = "Bayesian Gaussian (BGe)",
"loglik-g" = "Log-Likelihood (Gauss.)",
"pred-loglik-g" = "Predictive Log-Likelihood (Gauss.)",
"aic-g" = "AIC (Gauss.)",
"bic-g" = "BIC (Gauss.)",
"ebic-g" = "eBIC (Gauss.)",
"nal-g" = "Node-Average Likelihood (Gauss.)",
"loglik-cg" = "Log-Likelihood (cond. Gauss.)",
"pred-loglik-cg" = "Predictive Log-Likelihood (cond. Gauss.)",
"pnal-g" = "Penalized Node-Average Likelihood (Gauss.)",
"aic-cg" = "AIC (cond. Gauss.)",
"bic-cg" = "BIC (cond. Gauss.)",
"ebic-cg" = "eBIC (cond. Gauss.)",
"nal-cg" = "Node-Average Likelihood (cond. Gauss.)",
"pnal-cg" = "Penalized Node-Average Likelihood (cond. Gauss.)",
"custom-score" = "User-Provided Score Function"
)
score.extra.args = list(
"k2" = character(0),
"bde" = c("prior", "beta", "iss"),
"bds" = c("prior", "beta", "iss"),
"bdj" = c("prior", "beta"),
"mbde" = c("prior", "beta", "iss", "exp"),
"bdla" = c("prior", "beta", "l"),
"aic" = c("k"),
"bic" = c("k"),
"ebic" = c("k", "gamma"),
"bge" = c("prior", "beta", "nu", "iss.mu", "iss.w"),
"loglik" = character(0),
"pred-loglik" = c("newdata"),
"fnml" = character(0),
"qnml" = character(0),
"nal" = character(0),
"pnal" = c("k"),
"loglik-g" = character(0),
"pred-loglik-g" = c("newdata"),
"aic-g" = c("k"),
"bic-g" = c("k"),
"ebic-g" = c("k", "gamma"),
"nal-g" = character(0),
"pnal-g" = c("k"),
"loglik-cg" = character(0),
"pred-loglik-cg" = c("newdata"),
"aic-cg" = c("k"),
"bic-cg" = c("k"),
"ebic-cg" = c("k", "gamma"),
"nal-cg" = character(0),
"pnal-cg" = c("k"),
"custom-score" = c("fun", "args")
)
prior.distributions = c("uniform", "vsp", "cs", "marginal")
prior.labels = c(
"uniform" = "Uniform",
"vsp" = "Variable Selection",
"cs" = "Castelo & Siebes",
"marginal" = "Marginal Uniform"
)
#-- mutual information estimators ---------------------------------------------#
available.discrete.mi = c("mi")
available.continuous.mi = c("mi-g")
available.mi = c(available.discrete.mi, available.continuous.mi)
mi.estimator.labels = c(
"mi" = "Maximum Likelihood (disc.)",
"mi-g" = "Maximum Likelihood (Gauss.)"
)
mi.estimator.tests = c(
"mi" = "mi",
"mi-g" = "mi-g"
)
#-- structure learning algorithms ---------------------------------------------#
markov.blanket.algorithms =
c("gs", "iamb", "fast.iamb", "inter.iamb", "iamb.fdr")
local.search.algorithms = c("pc.stable", "mmpc", "si.hiton.pc", "hpc")
constraint.based.algorithms =
c(markov.blanket.algorithms, local.search.algorithms)
score.based.algorithms = c("hc", "tabu")
em.algorithms = c("structural.em")
hybrid.algorithms = c("rsmax2", "mmhc", "h2pc")
mim.based.algorithms = c("chow.liu", "aracne")
classification.algorithms = c("naive.bayes", "tree.bayes")
available.learning.algorithms = c(constraint.based.algorithms,
score.based.algorithms, hybrid.algorithms, mim.based.algorithms,
classification.algorithms, em.algorithms)
learning.labels = c(
"pc.stable" = "PC (Stable)",
"gs" = "Grow-Shrink",
"iamb" = "IAMB",
"fast.iamb" = "Fast-IAMB",
"inter.iamb" = "Inter-IAMB",
"iamb.fdr" = "IAMB-FDR",
"rnd" = "random/generated",
"hc" = "Hill-Climbing",
"tabu" = "Tabu Search",
"structural.em" = "Structural EM",
"mmpc" = "Max-Min Parent Children",
"si.hiton.pc" = "Semi-Interleaved HITON-PC",
"hpc" = "Hybrid Parents and Children",
"rsmax2" = "Two-Phase Restricted Maximization",
"mmhc" = "Max-Min Hill-Climbing",
"h2pc" = "Hybrid^2 Parent Children",
"aracne" = "ARACNE",
"chow.liu" = "Chow-Liu",
"naive.bayes" = "Naive Bayes Classifier",
"tree.bayes" = "TAN Bayes Classifier"
)
learning.extra.args = list(
"hc" = c("max.iter", "maxp", "restart", "perturb"),
"tabu" = c("max.iter", "maxp", "tabu", "max.tabu"),
"chow.liu" = character(0),
"tree.bayes" = c("estimator", "root")
)
#-- random graph generation algorithms ----------------------------------------#
random.graph.generation.algorithms = c("ordered", "ic-dag", "melancon")
graph.generation.algorithms =
c(random.graph.generation.algorithms, "empty", "complete", "averaged")
graph.generation.labels = c(
"ordered" = "Full Ordering",
"ic-dag" = "Ide & Cozman's Multiconnected DAGs",
"melancon" = "Melancon's Uniform Probability DAGs",
"empty" = "Empty",
"complete" = "Complete DAGs",
"averaged" = "Model Averaging"
)
graph.generation.extra.args = list(
"ordered" = "prob",
"ic-dag" = c("burn.in", "max.degree", "max.in.degree", "max.out.degree",
"every"),
"melancon" = c("burn.in", "max.degree", "max.in.degree", "max.out.degree",
"every"),
"averaged" = "threshold"
)
#-- conditional probability query algorithms ----------------------------------#
cpq.algorithms = c("ls", "lw")
cpq.labels = c(
"ls" = "Logic/Forward Sampling",
"lw" = "Likelihood Weighting"
)
cpq.extra.args = list(
"ls" = c("n", "batch", "query.nodes"),
"lw" = c("n", "batch", "query.nodes")
)
#-- cross-validation loss functions -------------------------------------------#
discrete.loss.functions = c("logl", "pred", "pred-lw")
continuous.loss.functions = c("logl-g", "cor", "cor-lw", "mse", "mse-lw")
mixedcg.loss.functions = c("logl-cg", "cor-lw-cg", "mse-lw-cg", "pred-lw-cg")
classifiers.loss.functions = c("pred-exact")
loss.functions = c(discrete.loss.functions, continuous.loss.functions,
mixedcg.loss.functions, classifiers.loss.functions)
loss.labels = c(
"logl" = "Log-Likelihood Loss (disc.)",
"pred-exact" = "Classification Error (Posterior, exact)",
"pred" = "Classification Error",
"pred-lw" = "Classification Error (Posterior, disc.)",
"pred-lw-cg" = "Classification Error (Posterior, cond. Gauss.)",
"logl-g" = "Log-Likelihood Loss (Gauss.)",
"cor" = "Predictive Correlation",
"cor-lw" = "Predictive Correlation (Posterior, Gauss.)",
"cor-lw-cg" = "Predictive Correlation (Posterior, cond. Gauss.)",
"mse" = "Mean Squared Error",
"mse-lw" = "Mean Squared Error (Posterior, Gauss.)",
"mse-lw-cg" = "Mean Squared Error (Posterior, cond. Gauss.)",
"logl-cg" = "Log-Likelihood Loss (cond. Gauss.)"
)
loss.extra.args = list(
"logl" = character(0),
"pred" = c("predict", "target", "predict.args"),
"pred-exact" = c("target", "prior"),
"pred-lw" = c("target", "n", "from"),
"pred-lw-cg" = c("target", "n", "from"),
"logl-g" = character(0),
"cor" = c("predict", "target", "predict.args"),
"cor-lw" = c("target", "n", "from"),
"cor-lw-cg" = c("target", "n", "from"),
"mse" = c("predict", "target", "predict.args"),
"mse-lw" = c("target", "n", "from"),
"mse-lw-cg" = c("target", "n", "from"),
"logl-cg" = character(0)
)
#-- parameter estimators ------------------------------------------------------#
available.dbn.fits = c("mle", "bayes", "hdir", "hard-em")
available.gbn.fits = c("mle-g", "hard-em-g")
available.cgbn.fits = c("mle-cg", "hard-em-cg")
available.fits = c(available.dbn.fits, available.gbn.fits, available.cgbn.fits)
complete.data.fits = c("mle", "bayes", "hdir", "mle-g", "mle-cg")
fits.labels = c(
"mle" = "Maximum Likelihood (disc.)",
"mle-g" = "Maximum Likelihood (Gauss.)",
"mle-cg" = "Maximum Likelihood (cond. Gauss.)",
"bayes" = "Bayesian Dirichlet",
"hdir" = "Bayesian Hierarchical Dirichlet",
"hard-em" = "Hard Expectation-Maximization (disc.)",
"hard-em-g" = "Hard Expectation-Maximization (Gauss.)",
"hard-em-cg" = "Hard Expectation-Maximization (cond. Gauss.)"
)
fits.extra.args = list(
"mle" = "replace.unidentifiable",
"mle-g" = "replace.unidentifiable",
"mle-cg" = "replace.unidentifiable",
"bayes" = "iss",
"hdir" = c("iss", "alpha0", "group"),
"hard-em" = c("impute", "impute.args", "fit", "fit.args",
"loglik.threshold", "params.threshold", "max.iter",
"newdata", "start"),
"hard-em-g" = c("impute", "impute.args", "fit", "fit.args",
"loglik.threshold", "params.threshold", "max.iter",
"newdata", "start"),
"hard-em-cg" = c("impute", "impute.args", "fit", "fit.args",
"loglik.threshold", "params.threshold", "max.iter",
"newdata", "start")
)
fitted.from.method = c(
"mle" = "bn.fit.dnet",
"mle-g" = "bn.fit.gnet",
"mle-cg" = "bn.fit.cgnet",
"bayes" = "bn.fit.dnet",
"hdir" = "bn.fit.dnet",
"hard-em" = "bn.fit.dnet",
"hard-em-g" = "bn.fit.gnet",
"hard-em-cg" = "bn.fit.cgnet"
)
#-- cross-validation fold schemes ---------------------------------------------#
available.cv.methods = c("k-fold", "hold-out", "custom-folds")
cv.labels = c(
"k-fold" = "k-Fold",
"hold-out" = "Hold-Out",
"custom-folds" = "Custom Folds"
)
cv.extra.args = list(
"k-fold" = c("k", "runs"),
"hold-out" = c("k", "m", "runs"),
"custom-folds" = c("folds")
)
#-- prediction methods --------------------------------------------------------#
available.prediction.methods = c("parents", "bayes-lw", "exact")
prediction.labels = c(
"parents" = "Parents (Maximum Likelihood)",
"bayes-lw" = "Posterior Expectation (Likelihood Weighting)",
"exact" = "Exact Inference"
)
prediction.extra.args = list(
"parents" = character(0),
"bayes-lw" = c("n", "from"),
"exact" = "from"
)
#-- imputation methods --------------------------------------------------------#
available.imputation.methods = c("parents", "bayes-lw", "exact")
imputation.extra.args = list(
"parents" = character(0),
"bayes-lw" = "n",
"exact" = character(0)
)
imputation.labels = c(
"parents" = "Parents (Maximum Likelihood)",
"bayes-lw" = "Posterior Expectation (Likelihood Weighting)",
"exact" = "Exact Inference"
)
#-- discretization methods ----------------------------------------------------#
available.discretization.methods = c("quantile", "interval", "hartemink")
discretization.labels = c(
"quantile" = "Quantile Discretization",
"interval" = "Interval Discretization",
"hartemink" = "Hartemink's Pairwise Mutual Information"
)
discretization.extra.args = list(
"quantile" = character(0),
"interval" = character(0),
"hartemink" = c("ibreaks", "idisc")
)
#-- arc strength estimators ---------------------------------------------------#
available.strength.methods = c("test", "score", "bootstrap", "bayes-factor")
#-- graph enumeration formulas ------------------------------------------------#
available.enumerations = c("all-dags", "dags-disregarding-one-arc",
"dags-given-ordering", "dags-with-k-roots", "dags-with-r-arcs")
enumerations.extra.args = list(
"all-dags" = character(0),
"dags-disregarding-one-arc" = character(0),
"dags-given-ordering" = character(0),
"dags-with-k-roots" = "k",
"dags-with-r-arcs" = "r"
)
#-- data, network and node types ----------------------------------------------#
available.fitted = c("bn.fit.dnet", "bn.fit.onet", "bn.fit.donet",
"bn.fit.gnet", "bn.fit.cgnet")
available.classifiers = c("bn.naive", "bn.tan")
discrete.data.types = c("factor", "ordered", "mixed-do")
continuous.data.types = c("continuous")
mixed.data.types = c("mixed-cg")
available.data.types = c(discrete.data.types, continuous.data.types,
mixed.data.types)
data.type.labels = c(
"continuous" = "all variables must be numeric",
"factor" = "all variables must be unordered factors",
"ordered" = "all variables must be ordered factors",
"mixed-cg" = "variables can be either numeric or factors",
"mixed-do" = "variables can be either ordered or unordered factors"
)
fitted.node.types = c("bn.fit.dnode", "bn.fit.onode", "bn.fit.gnode",
"bn.fit.cgnode")
#-- graphviz plots option lists -----------------------------------------------#
graphviz.layouts = c("dot", "neato", "twopi", "circo", "fdp")
graphviz.node.shapes = c("ellipse", "circle", "rectangle")
graphviz.network.diff.methods = c("none", "from-first")
graphviz.network.diff.extra.args = list(
"none" = character(0),
"from-first" = c("tp.col", "tp.lty", "tp.lwd", "fp.col", "fp.lty", "fp.lwd",
"fn.col", "fn.lty", "fn.lwd", "show.first")
)
#-- functions to manipulate the global test counter from R --------------------#
# global test counter.
reset.test.counter = function() {
invisible(.Call(call_reset_test_counter))
}#RESET.TEST.COUNTER
increment.test.counter = function(i = 1) {
if (!is.real.number(i))
stop("the increment must be a single real number.")
invisible(.Call(call_increment_test_counter, i))
}#INCREMENT.TEST.COUNTER
test.counter = function() {
return(.Call(call_get_test_counter))
}#TEST.COUNTER
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.