Nothing
      # check test labels.
check.test = function(test, data) {
  data.type = attr(data, "metadata")$type
  if (is.null(data.type))
    data.type = data.type(data)
  if (!missing(test) && !is.null(test)) {
    # check the test label.
    check.label(test, choices = available.tests, labels = test.labels,
      argname = "conditional independence test", see = "bnlearn-package")
    # check if it's the right test for the data (discrete, continuous).
    if ((data.type != "ordered") &&
        (test %in% available.ordinal.tests))
      stop("test '", test, "' may only be used with ordinal data.")
    if ((data.type %!in% discrete.data.types) &&
        (test %in% available.discrete.tests))
      stop("test '", test, "' may only be used with discrete data.")
    if ((data.type != "continuous") &&
        (test %in% available.continuous.tests))
      stop("test '", test, "' may only be used with continuous data.")
    if ((data.type != "mixed-cg") &&
        (test %in% available.mixedcg.tests))
      stop("test '", test, "' may only be used with a mixture of continuous and discrete data.")
    return(test)
  }#THEN
  else {
    if (data.type == "ordered")
      return("jt")
    else if (data.type %in% c("factor", "mixed-do"))
      return("mi")
    else if (data.type == "continuous")
      return("cor")
    else if (data.type == "mixed-cg")
      return("mi-cg")
  }#ELSE
}#CHECK.TEST
# check the the target nominal type I error rate.
check.alpha = function(alpha, network = NULL) {
  # check the the target nominal type I error rate
  if (!missing(alpha) && !is.null(alpha)) {
    # validate alpha.
    if (!is.probability(alpha))
      stop("alpha must be a numerical value in [0,1].")
  }#THEN
  else {
    # check if there is an alpha value stored in the bn object;
    # otherwise use the usual 0.05 value.
    if (!is.null(network$learning$args$alpha))
      alpha = network$learning$args$alpha
    else
      alpha = 0.05
  }#ELSE
  return(alpha)
}#CHECK.ALPHA
# sanitize the extra arguments passed to the conditional independence tests.
check.test.args = function(test, network = NULL, data, extra.args) {
  # check the imaginary sample size.
  if (has.argument(test, "B", test.extra.args))
    extra.args[["B"]] =
      check.B(B = extra.args[["B"]], network = network, criterion = test)
  # check the R function implementing a custom test.
  if (has.argument(test, "fun", test.extra.args))
    extra.args[["fun"]] =
      check.custom.test.function(fun = extra.args[["fun"]], network = network)
  if (has.argument(test, "args", test.extra.args))
    extra.args[["args"]] =
      check.custom.test.arguments(args = extra.args[["args"]], network = network)
  # warn about and remove unused arguments.
  extra.args = check.unused.args(extra.args, test.extra.args[[test]])
  return(extra.args)
}#CHECK.TEST.ARGS
# check the number of permutation/boostrap samples.
check.B = function(B, network, criterion) {
  if (criterion %in% resampling.tests) {
    if (!missing(B) && !is.null(B)) {
      if (!is.positive.integer(B))
        stop("the number of permutations/bootstrap replications must be a positive integer number.")
      B = as.integer(B)
    }#THEN
    else {
      if (!is.null(network$learning$args$B))
        B = network$learning$args$B
      else if (criterion %in% semiparametric.tests)
        B = 100L
      else
        B = 5000L
    }#ELSE
  }#THEN
  else {
    if (!missing(B) && !is.null(B))
      warning("this test does not require any permutations/bootstrap resampling, ignoring B.\n")
    B = NULL
  }#ELSE
  return(B)
}#CHECK.B
# check the R function implementing a custom score.
check.custom.test.function = function(fun, network) {
  # there is no possible default value.
  if (is.null(fun)) {
    if (!is.null(network$learning$args$fun))
      fun = network$learning$args$fun
    else
      stop("missing the custom test function.")
  }#THEN
  else {
    # check the argument list.
    fun.arguments = names(formals(fun))
    if (!identical(fun.arguments, c("x", "y", "z", "data", "args")))
      stop("the custom test function must have signature function(x, y, z, data, args).")
  }#ELSE
  return(fun)
}#CHECK.CUSTOM.TEST.FUNCTION
# check the additional argument list passed to a custom test.
check.custom.test.arguments = function(args, network) {
  # default to an empty argument list.
  if (is.null(args)) {
    if (!is.null(network$learning$args$args))
      args = network$learning$args$args
    else
      args = list()
  }#THEN
  else {
    if (!is.list(args))
      stop("the arguments for the custom test must be passed as a list.")
  }#ELSE
  return(args)
}#CHECK.CUSTOM.TEST.ARGUMENTS
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.