R/set_brainGraph_attributes.R

Defines functions xfm.weights set_graph_colors delete_all_attr set_brainGraph_attr

Documented in delete_all_attr set_brainGraph_attr set_graph_colors xfm.weights

#' Set graph, vertex, and edge attributes common in MRI analyses
#'
#' \code{set_brainGraph_attr} is a convenience function that sets a number of
#' graph, vertex, and edge attributes for a given graph object. Specifically, it
#' calculates measures that are common in MRI analyses of brain networks.
#'
#' Including \code{type='random'} in the function call will reduce the number of
#' attributes calculated. It will only add graph-level attributes for:
#' clustering coefficient, characteristic path length, rich club coefficient,
#' global efficiency, and modularity.
#'
#' @section Negative edge weights:
#' If there are any negative edge weights in the graph, several of the
#' distance-based metrics will \emph{not} be calculated, because they can throw
#' errors which is undesirable when processing a large dataset. The metrics are:
#' local and nodal efficiency, diameter, characteristic path length, and
#' hubness.
#'
#' @section Transforming edge weights:
#' For distance-based measures, it is important to transform the edge weights so
#' that the \emph{strongest} connections are re-mapped to having the
#' \emph{lowest} weights. Then you may calculate e.g., the \emph{shortest path
#' length} which will include the strongest connections.
#'
#' \code{xfm.type} allows you to choose from 5 options for transforming edge
#' weights when calculating distance-based metrics (e.g., shortest paths). There
#' is no \dQuote{best-practice} for choosing one over the other, but the reciprocal is
#' probably most common.
#' \describe{
#'   \item{\code{1/w}}{reciprocal (default)}
#'   \item{\code{-log(w)}}{the negative (natural) logarithm}
#'   \item{\code{1-w}}{subtract weights from 1}
#'   \item{\code{-log10(w/max(w))}}{negative (base-10) log of normalized
#'   weights}
#'   \item{\code{-log10(w/max(w)+1)}}{same as above, but add 1 before taking
#'     the log}
#' }
#'
#' To transform the weights back to original values, specify \code{invert=TRUE}.
#'
#' @section Community detection:
#' \code{clust.method} allows you to choose from any of the clustering
#' (community detection) functions available in \code{igraph}. These functions
#' begin with \code{cluster_}; the function argument should not include this
#' leading character string. There are a few possibilities, depending on the
#' value and the type of input graph:
#' \enumerate{
#'   \item By default, \code{louvain} is used, calling
#'     \code{\link[igraph]{cluster_louvain}}
#'   \item Uses \code{spinglass} if there are any negative edges and/or the
#'     selected method is \code{spinglass}
#'   \item Uses \code{walktrap} if there are any negative edge weights and any
#'     other method (besides \code{spinglass}) is selected
#'   \item Automatically transforms the edge weights if \code{edge_betweenness}
#'     is selected and the graph is weighted, because the algorithm considers
#'     edges as \emph{distances}
#' }
#'
#' @param g A graph object
#' @param use.parallel Logical indicating whether to use \emph{foreach}.
#'   Default: \code{TRUE}
#' @param A Numeric matrix; the (weighted) adjacency matrix, which can be used
#'   for faster calculation of local efficiency. Default: \code{NULL}
#' @param clust.method Character string indicating which method to use for
#'   community detection. Default: \code{'louvain'}
#' @inheritParams Creating_Graphs
#' @export
#'
#' @return A graph object with the following attributes:
#'   \item{Graph-level}{Density, connected component sizes, diameter, # of
#'     triangles, transitivity, average path length, assortativity, global &
#'     local efficiency, modularity, vulnerability, hub score, rich-club
#'     coefficient, # of hubs, edge asymmetry}
#'   \item{Vertex-level}{Degree, strength; betweenness, eigenvector, and
#'     leverage centralities; hubs; transitivity (local); k-core, s-core; local
#'     & nodal efficiency; color (community, lobe, component); membership
#'     (community, lobe, component); gateway and participation coefficients,
#'     within-module degree z-score; vulnerability; and coordinates (x, y, and
#'     z)}
#'   \item{Edge-level}{Color (community, lobe, component), edge betweenness,
#'     Euclidean distance (in mm), weight (if weighted)}
#'
#' @seealso \code{\link[igraph]{components}}, \code{\link[igraph]{diameter}},
#' \code{\link[igraph]{centr_betw}}, \code{\link[igraph]{betweenness}},
#' \code{\link[igraph]{centr_eigen}}, \code{\link[igraph]{transitivity}},
#' \code{\link[igraph]{distances}}, \code{\link[igraph]{assortativity}},
#' \code{\link[igraph]{coreness}}, \code{\link[igraph]{communities}},
#' \code{\link[igraph]{knn}}
#'
#' @author Christopher G. Watson, \email{cgwatson@@bu.edu}
#' @name Attributes
#' @rdname attributes

set_brainGraph_attr <- function(g, type=c('observed', 'random'),
                                use.parallel=TRUE, A=NULL,
                                xfm.type=c('1/w', '-log(w)', '1-w',
                                           '-log10(w/max(w))',
                                           '-log10(w/max(w)+1)'),
                                clust.method='louvain') {
  if (!is_igraph(g) && !is.brainGraph(g)) {
    stop('Input graph must have class either "brainGraph" or "igraph"')
  }
  V(g)$degree <- degree(g)
  g$Cp <- transitivity(g, type='localaverage')
  g$Lp <- mean_distance(g)
  g$rich <- rich_club_all(g)
  g$E.global <- efficiency(g, 'global', weights=NA)

  # Handle different cases for different community detection methods
  clust.funs <- ls('package:igraph', pattern='^cluster_')
  clust.funs <- substr(clust.funs, 9L, nchar(clust.funs))
  if (!clust.method %in% clust.funs) {
    stop('Invalid clustering method! You must choose from the following:\n',
         paste(clust.funs, collapse='\n'))
  } else if (clust.method == 'spinglass' && !is_connected(g)) {
    warning('Invalid clustering method for an unconnected graph; using "louvain".')
    clust.method <- 'louvain'
  }
  if (clust.method %in% c('edge_betweenness', 'fast_greedy', 'walktrap')) {
    comm <- eval(parse(text=paste0('cluster_', clust.method, '(g, weights=NULL)')))
  } else if (clust.method == 'infomap') {
    comm <- cluster_infomap(g, e.weights=NA)
  } else {
    comm <- eval(parse(text=paste0('cluster_', clust.method, '(g, weights=NA)')))
  }
  g$clust.method <- clust.method
  g$mod <- max(comm$modularity)

  type <- match.arg(type)
  if (type == 'observed') {
    n <- vcount(g)
    # Graph-level attributes
    #---------------------------------------------------------------------------
    g$density <- graph.density(g)

    # Connected components et al.
    clusts <- components(g)
    comps <- rev(table(clusts$csize))
    x <- clusts$membership
    V(g)$comp <- match(x, order(table(x), decreasing=TRUE))
    if (length(unique(x)) < n) g <- set_graph_colors(g, 'color.comp', V(g)$comp)
    g$conn.comp <- data.frame(size=as.integer(names(comps)), number=as.integer(comps))
    g$max.comp <- g$conn.comp[1L, 1L]
    g$num.tri <- sum(count_triangles(g)) / 3
    g$diameter <- diameter(g, weights=NA)
    g$transitivity <- transitivity(g)
    g$assort <- assortativity_degree(g)

    if (is_weighted(g)) {
      V(g)$strength <- strength(g)
      g$strength <- mean(V(g)$strength)
      V(g)$knn.wt <- knn(g)$knn
      V(g)$s.core <- s_core(g, A)
      g$rich.wt <- rich_club_all(g, weighted=TRUE, A=A)
      V(g)$transitivity.wt <- transitivity(g, type='weighted')

      # Avoid errors when there are negative weights
      if (any(E(g)$weight < 0)) {
        warning('Negative weights present. Skipping distance-based functions.')
        if (!clust.method %in% c('spinglass', 'walktrap')) {
          warning('Invalid clustering method for negative edge weights; using "walktrap".')
          clust.method <- 'walktrap'
        }
      } else {
        # Need to convert weights for distance measures
        xfm.type <- match.arg(xfm.type)
        g <- xfm.weights(g, xfm.type)
        Adist <- as_adj(g, names=FALSE, sparse=FALSE, attr='weight')
        D <- distances(g)
        V(g)$E.local.wt <- efficiency(g, 'local', use.parallel=use.parallel, A=Adist)
        g$E.local.wt <- mean(V(g)$E.local.wt)
        V(g)$E.nodal.wt <- efficiency(g, 'nodal', D=D)
        g$E.global.wt <- mean(V(g)$E.nodal.wt)
        g$diameter.wt <- diameter(g)
        V(g)$Lp.wt <- mean_distance_wt(g, 'vertex', D=D)
        g$Lp.wt <- mean_distance_wt(g, 'graph', D=D)
        if (clust.method == 'edge_betweenness') comm.wt <- cluster_edge_betweenness(g)

        # Convert back to connection strength
        g <- xfm.weights(g, xfm.type, invert=TRUE)
        V(g)$hubs.wt <- hubness(g)
        g$num.hubs.wt <- sum(V(g)$hubs.wt >= 2)
      }

      g$clust.method.wt <- clust.method
      if (clust.method != 'edge_betweenness') {
        comm.wt <- eval(parse(text=paste0('cluster_', clust.method, '(g)')))
      }
      g$mod.wt <- max(comm.wt$modularity)
      x <- comm.wt$membership
      V(g)$comm.wt <- match(x, order(table(x), decreasing=TRUE))
      if (length(unique(x)) < n) g <- set_graph_colors(g, 'color.comm.wt', V(g)$comm.wt)
      V(g)$GC.wt <- gateway_coeff(g, V(g)$comm.wt, A=A, weighted=TRUE)
      V(g)$PC.wt <- part_coeff(g, V(g)$comm.wt, A=A, weighted=TRUE)
      V(g)$z.score.wt <- within_module_deg_z_score(g, V(g)$comm.wt, A=A, weighted=TRUE)
    }

    if (is_directed(g)) {
      hubs <- hub_score(g)
      g$hub.score <- hubs$value
      authorities <- authority_score(g)
      g$authority.score <- authorities$value
      V(g)$hub.score <- hubs$vector
      V(g)$authority.score <- authorities$vector
    }

    # Attributes requiring an atlas
    #-----------------------------------------------------------------------------
    if (!is.null(A) && !is_binary(A)) A[A != 0] <- 1
    if (!is.null(g$atlas)) {
      g$assort.lobe <- assortativity_nominal(g, as.integer(factor(V(g)$lobe)))
      g$assort.lobe.hemi <- assortativity_nominal(g, V(g)$lobe.hemi)

      g$asymm <- edge_asymmetry(g, A=A)$asymm
      V(g)$asymm <- edge_asymmetry(g, 'vertex', A=A)$asymm

      E(g)$dist <- edge_spatial_dist(g)
      g$spatial.dist <- mean(E(g)$dist)
      V(g)$dist <- vertex_spatial_dist(g)
      V(g)$dist.strength <- V(g)$dist * V(g)$degree

      vattrs <- vertex_attr_names(g)
      cols <- c('class', 'network', 'area', 'gyrus', 'Yeo_7network', 'Yeo_17network')
      doAssort <- cols[cols %in% vattrs]
      for (col in doAssort) {
        g <- set_graph_attr(g, paste0('assort.', col),
                            assortativity_nominal(g, factor(vertex_attr(g, col))))
      }
    }

    D <- distances(g, weights=NA)
    V(g)$knn <- knn(g, weights=NA)$knn
    V(g)$Lp <- mean_distance_wt(g, 'vertex', weights=NA, D=D)

    E(g)$btwn <- edge.betweenness(g)
    V(g)$btwn.cent <- centr_betw(g)$res
    V(g)$hubs <- hubness(g, weights=NA)
    g$num.hubs <- sum(V(g)$hubs >= 2)
    V(g)$ev.cent <- centr_eigen(g)$vector
    V(g)$lev.cent <- centr_lev(g, A=A)
    V(g)$k.core <- coreness(g)
    V(g)$transitivity <- transitivity(g, type='local', isolates='zero')
    V(g)$E.local <- efficiency(g, type='local', weights=NA, use.parallel=use.parallel, A=A)
    V(g)$E.nodal <- efficiency(g, type='nodal', weights=NA, D=D)
    g$E.local <- mean(V(g)$E.local)
    V(g)$vulnerability <- vulnerability(g, use.parallel=use.parallel)
    g$vulnerability <- max(V(g)$vulnerability)
    V(g)$eccentricity <- eccentricity(g)

    # Community stuff
    x <- comm$membership
    V(g)$comm <- match(x, order(table(x), decreasing=TRUE))
    if (length(unique(x)) < n) g <- set_graph_colors(g, 'color.comm', V(g)$comm)
    V(g)$circle.layout.comm <- order(V(g)$comm, V(g)$degree)
    V(g)$GC <- gateway_coeff(g, V(g)$comm, A=A)
    V(g)$PC <- part_coeff(g, V(g)$comm, A=A)
    V(g)$z.score <- within_module_deg_z_score(g, V(g)$comm, A=A)
  }

  return(g)
}

#' Delete all attributes of a graph
#'
#' Deletes all graph-, vertex-, and edge-level attributes of an \code{igraph}
#' graph object.
#'
#' @param g An \code{igraph} graph object
#' @param keep.names Logical indicating whether to keep the \code{name} vertex
#'   attribute (default: \code{FALSE})
#'
#' @keywords internal
#' @return An \code{igraph} graph object
#' @seealso \code{\link[igraph]{delete_graph_attr},
#'   \link[igraph]{delete_vertex_attr}, \link[igraph]{delete_edge_attr}}
#' @author Christopher G. Watson, \email{cgwatson@@bu.edu}

delete_all_attr <- function(g, keep.names=FALSE) {
  for (att in graph_attr_names(g)) g <- delete_graph_attr(g, att)
  for (att in edge_attr_names(g)) g <- delete_edge_attr(g, att)
  vattrs <- vertex_attr_names(g)
  if (isTRUE(keep.names)) vattrs <- setdiff(vattrs, 'name')
  for (att in vattrs) g <- delete_vertex_attr(g, att)

  return(g)
}

#' Color graph vertices and edges
#'
#' \code{set_graph_colors} takes an integer vector representing membership of
#' some grouping (e.g., a community or connected component) and creates a
#' character vector of colors for each grouping. Isolated vertices will be
#' colored \emph{gray}. Edges are assigned the same color if connected to
#' vertices in the same group, and assigned \emph{gray} otherwise.
#'
#' @param g An \code{igraph} graph object
#' @param name Character string of the name of the attribute to add
#' @param memb An integer vector representing membership of e.g. a community
#'
#' @return The same graph with additional vertex and edge attributes
#' @keywords internal

set_graph_colors <- function(g, name, memb) {
  stopifnot(length(memb) == vcount(g))
  colname <- strsplit(name, '.', fixed=TRUE)[[1L]][2L]
  if (colname %in% c('lobe', 'class', 'network', 'area', 'gyrus', 'Yeo_7network', 'Yeo_17network')) {
    atlas.dt <- get(g$atlas)
    memb <- atlas.dt[name %in% V(g)$name, as.integer(get(colname))] # Preserve order
  } else {
    memb <- as.integer(factor(memb))
  }
  big.groups <- which(table(memb) > 1L)

  # Vertex colors
  group.cols.memb <- rep_len('gray', max(memb))
  if (length(big.groups) > 0L) group.cols.memb[big.groups] <- group.cols[big.groups]
  g <- set_vertex_attr(g, name, value=group.cols.memb[memb])

  # Edge colors
  m <- ecount(g)
  if (m > 0) {
    newcols <- rep.int('gray50', m)
    if (length(big.groups) > 0L) {
      tmp <- vector('list', length=max(big.groups))
      A <- as_adj(g, names=FALSE, sparse=FALSE, edges=TRUE)
      for (i in big.groups) {
        x <- which(memb == i)
        tmp[[i]] <- unique(as.integer(A[x, x]))[-1L]
        if (!is.null(tmp[[i]])) newcols[tmp[[i]]] <- group.cols[i]
      }
    }

    g <- set_edge_attr(g, name, value=newcols)
  }
  return(g)
}

#' Transform edge weights
#'
#' @param xfm.type Character string specifying how to transform the weights.
#'   Default: \code{1/w}
#' @param invert Logical indicating whether or not to invert the transformation.
#'   Default: \code{FALSE}
#' @export
#' @return \code{xfm.weights} returns the same graph object, with transformed
#'   edge weights plus a graph attribute (\code{xfm.type}) recording the method
#'   of transformation
#' @rdname attributes

xfm.weights <- function(g, xfm.type=c('1/w', '-log(w)', '1-w',
                                      '-log10(w/max(w))', '-log10(w/max(w)+1)'),
                        invert=FALSE) {
  stopifnot(is_igraph(g), is_weighted(g))
  xfm.type <- match.arg(xfm.type)
  if (xfm.type == '1/w') {
    E(g)$weight <- 1 / E(g)$weight

  } else if (xfm.type == '-log(w)') {
    if (isTRUE(invert)) {
      E(g)$weight <- exp(-E(g)$weight)
    } else {
      E(g)$weight <- -log(E(g)$weight)
    }

  } else if (xfm.type == '1-w') {
    E(g)$weight <- 1 - E(g)$weight

  } else if (xfm.type == '-log10(w/max(w))') {
    if (isTRUE(invert)) {
      E(g)$weight <- g$max.weight / 10^(E(g)$weight)
    } else {
      g$max.weight <- max(E(g)$weight)
      E(g)$weight <- -log10(E(g)$weight / g$max.weight)
    }

  } else if (xfm.type == '-log10(w/max(w)+1)') {
    if (isTRUE(invert)) {
      E(g)$weight <- g$max.weight * (1 / 10^(E(g)$weight) - 1)
    } else {
      g$max.weight <- max(E(g)$weight)
      E(g)$weight <- -log10(E(g)$weight / g$max.weight + 1)
    }
  }

  g$xfm.type <- xfm.type
  return(g)
}

Try the brainGraph package in your browser

Any scripts or data that you put into this service are public.

brainGraph documentation built on June 22, 2024, 7:36 p.m.