R/amhCopula.R

Defines functions .rhoAmhCopula rhoAmhCopula iTauAmhCopula ramhCopula damhCopula pamhCopula amhCopula

Documented in amhCopula

## Copyright (C) 2012 Marius Hofert, Ivan Kojadinovic, Martin Maechler, and Jun Yan
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
## FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.


amhCopula <- function(param = NA_real_, dim = 2L,
		      use.indepC = c("message", "TRUE", "FALSE"))
{
  stopifnot(length(param) == 1)
##   if (dim > 2 && param[1] < 0)
##     stop("param can be negative only for dim = 2")
## FIXME
  if((dim <- as.integer(dim))> 2) stop("dim can currently only be 2 for this copula")
  if(!is.na(param) && param == 0) {
      use.indepC <- match.arg(use.indepC)
      if(!identical(use.indepC, "FALSE")) {
	  if(identical(use.indepC, "message"))
	      message("parameter at boundary ==> returning indepCopula()")
	  return( indepCopula(dim=dim) )
      }
  }
  ## get expressions of cdf and pdf
  cdfExpr <- function(d) {
    expr <-   "log((1 - alpha * (1 - u1)) / u1)"
    for (i in 2:d) {
      ui <- paste0("u", i)
      cur <- gsub("u1", ui, expr)
      expr <- paste(expr, cur, sep=" + ")
    }
    expr <- gsub("s", expr, "(1 - alpha) / (exp(s) - alpha)")
    parse(text = expr)
  }

  pdfExpr <- function(cdf, d) {
    val <- cdf
    for (i in 1:d) val <- D(val, paste0("u", i))
    val
  }

  cdf <- cdfExpr(dim)
  pdf <- if (dim <= 6)  pdfExpr(cdf, dim) else NULL

  new("amhCopula",
      dimension = dim,
      parameters = param,
      exprdist = c(cdf = cdf, pdf = pdf),
      param.names = "alpha",
      param.lowbnd = -1,# 0 for tau >= 0
      param.upbnd = 1,
      fullname = "<deprecated slot>")# "Amh copula family; Archimedean copula"
}

## for dim = 2 only :
pamhCopula <- function(copula, u) {
  if (abs(alpha <- copula@parameters[1]) <= .Machine$double.eps^.9)
    return (apply(u, 1, prod))
  ## dim = 2
  ## for (i in 1:dim) assign(paste0("u", i), u[,i])
  u1 <- u[,1]
  u2 <- u[,2]
  u1 * u2 / (1 - alpha * (1 - u1) * (1 - u2))
}

## for dim = 2 only :
damhCopula <- function(u, copula, log = FALSE, ...) {
  if (abs(alpha <- copula@parameters[1]) <= .Machine$double.eps^.9)
    return (rep.int(if(log) 0 else 1, nrow(u)))
  ## bivariate anyway
  u1 <- u[,1]
  u2 <- u[,2]
  r <- (-1 + alpha^2*(-1 + u1 + u2 - u1*u2) - alpha*(-2 + u1 + u2 + u1*u2)) /
      (-1 + alpha*(-1 + u1)*(-1 + u2))^3
  if(log) log(r) else r
}

ramhCopula <- function(n, copula) {
  dim <- copula@dimension
  if(is.na(alpha <- copula@parameters[1])) stop("parameter is NA")
  val <- matrix(runif(n * dim), nrow = n)
  if (abs(alpha) <= 100 * .Machine$double.eps)
    return (val)  ## the limit is independence
  ## Johnson (1987, p.362). Typo V_2 and p?
  ## solve quadratic equation anyway
  ##_ dim=2 (only) ==> rather use rnacopula(n, onacopula("A", c(alpha, 1:d)))
  ##_ FIXME: Inefficiency: val[,] already contains (u,w)
  ## Both changes would lead to non-back compatible RNG
  ## ==> introduce options(copula.oldRNG = TRUE)
  u <- runif(n)
  w <- runif(n)
  b <- 1 - u
  A <- w * (alpha * b)^2 - alpha
  B <- (alpha + 1) - 2 * alpha * b * w
  C <- w - 1
  v <- (- B + sqrt(B^2 - 4 * A * C)) / 2 / A
  ## v <- cbind(v, (- B - sqrt(B^2 - 4 * A * C)) / 2 / A) ## this root is not good
  v <- 1 - v
  cbind(u, v, deparse.level=0L)
}

iTauAmhCopula <- function(copula, tau, ...) {
    ## "..." may contain uniroot args: (tol, trace, maxiter, ...)
    tauMin <- (5 - 8*log(2)) / 3
    iSml <- tau < tauMin
    iLrg <- tau > 1/3
    if(any(out <- iSml | iLrg))
        warning("For the AMH copula, tau must be in [(5 - 8 log 2) / 3, 1/3] ~= [-0.1817, 0.3333]. Replacing too small (large) values by lower (upper) bound.")
    else if(tau == tauMin) out <- iSml <- TRUE
    else if(tau ==  1/3  ) out <- iLrg <- TRUE
    ## A _faster_ version of  r <- ifelse(tau < tauMin, -1, ifelse(tau > 1/3, 1, ....)):
    r <- tau
    r[iSml] <- -1.
    r[iLrg] <- +1.
    if(any(in. <- !out))
        r[in.] <- iTauCopula(copula, tau[in.], ...)
    r
}

rhoAmhCopula <- function(copula, ...) {
  chk.s(..., which.call = -2)
  .rhoAmhCopula(copula@parameters[1])
}
.rhoAmhCopula <- function(a) {
    if(is.na(a)) return(a)
    ## Nelsen (2006, p.172); need dilog function, where his dilog(x) = Li_2(1-x) = polylog(1-x, 2)
    ## range of rho: 33 - 48 log 2, 4 pi^2 - 39] ~= [-0.2711, 0.4784]
    ## if |alpha| << 1, do better than the direct formula:
    ## This is all based on "the beautiful formula" MM found on May 22, 2014:
    aa <- abs(a)
    if(aa < 7e-16)      a/3
    else if(aa < 1e-4)  a/3*(1 + a/4)
    else if(aa < 0.002) a*(1/3 + a*(1/12 + a* 3/100))
    else if(aa < 0.007) a*(1/3 + a*(1/12 + a*(3/100 + a/75)))
    else if(aa < 0.016) a*(1/3 + a*(1/12 + a*(3/100 + a*(1/75 + a/147))))
    else { ## now has rel.error < 10^-10
	3/a * (4 * (1 + 1/a) * dilog(a) -
		(if(a < 1) 8 * (1/a - 1) * log1p(- a) else 0) - (a + 12))
    }
}

pMatAmh <- function (u, copula, ...) {
    ## was pamhCopula
    stopifnot(!is.null(d <- ncol(u)), d == copula@dimension)
    if(is.na(th <- copula@parameters[1])) stop("parameter is NA")
    if(d == 2 && th < 0) # for now, .. to support negative tau  (FIXME(?): rather in copAMH)
        pamhCopula(copula, u)
    else
        pacopula(u, copAMH, theta=th, ...)
}

dMatAmh <- function (u, copula, log = FALSE, checkPar=TRUE, ...) {
    ## was  damhCopula
    stopifnot(!is.null(d <- ncol(u)), d == copula@dimension)
    if(is.na(th <- copula@parameters[1])) stop("parameter is NA")
    if(d == 2 && th < 0) # for now, .. to support negative tau
        damhCopula(u, copula, log=log)
    else
        copAMH@dacopula(u, theta=th, log=log, checkPar=checkPar, ...)
}

setMethod("rCopula", signature("numeric", "amhCopula"), ramhCopula)
setMethod("pCopula", signature("matrix", "amhCopula"), pMatAmh)
setMethod("dCopula", signature("matrix", "amhCopula"), dMatAmh)

## pCopula() and dCopula() *generic* already deal with non-matrix case!
## setMethod("pCopula", signature("numeric", "amhCopula"),
## 	  function (u, copula, ...)
##           pMatAmh(matrix(u, ncol = dim(copula)), copula, ...))
## setMethod("dCopula", signature("numeric", "amhCopula"),
## 	  function (u, copula, log=FALSE, ...)
## 	  dMatAmh(matrix(u, ncol = dim(copula)), copula, log=log, ...))


setMethod("iPsi", signature("amhCopula"),
	  function(copula, u) copAMH@iPsi(u, theta=copula@parameters))
setMethod("psi", signature("amhCopula"),
	  function(copula, s) copAMH@psi(t=s, theta=copula@parameters))

setMethod("diPsi", signature("amhCopula"),
	  function(copula, u, degree=1, log=FALSE, ...) {
              s <- if(log || degree %% 2 == 0) 1. else -1.
              s* copAMH@absdiPsi(u, theta=copula@parameters, degree=degree, log=log, ...)
      })


setMethod("tau", signature("amhCopula"), function(copula) tauAMH(copula@parameters[1]))
setMethod("rho", signature("amhCopula"), rhoAmhCopula)
setMethod("lambda", signature("amhCopula"), function(copula) c(lower=0, upper=0))
setMethod("iTau", signature("amhCopula"), iTauAmhCopula)
## iRho() uses default method:  uniroot(rho(.) - rh)

Try the copula package in your browser

Any scripts or data that you put into this service are public.

copula documentation built on Sept. 11, 2024, 7:48 p.m.