R/special-func.R

Defines functions debye2 debye1 Bernoulli Bernoulli.all polylog Eulerian.all Eulerian Stirling2.all Stirling2 Stirling1.all Stirling1 lsum signFF log1pexp log1mexp polynEval

Documented in Bernoulli Bernoulli.all debye1 debye2 Eulerian Eulerian.all log1mexp log1pexp polylog polynEval Stirling1 Stirling1.all Stirling2 Stirling2.all

## Copyright (C) 2012 Marius Hofert, Ivan Kojadinovic, Martin Maechler, and Jun Yan
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
## FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.


### Special Numeric Functions -- related to Archimedean Copulas
### -------------------------
### ( were "other numeric utilities" in ./aux-acopula.R )

polynEval <- function(coef, x) .Call(polyn_eval, coef, x)


##' @title Compute  f(a) = log(1 - exp(-a))  stably
##' @param a numeric vector of positive values
##' @param cutoff  log(2) is optimal, see  Maechler (201x) .....
##' @return f(a) == log(1 - exp(-a)) == log1p(-exp(-a)) == log(-expm1(-a))
##' @author Martin Maechler, May 2002 .. Aug. 2011
##' @references Maechler(2012)
##' Accurately Computing log(1 - exp(-|a|)) Assessed by the Rmpfr package.
##' http://cran.r-project.org/web/packages/Rmpfr/vignettes/log1mexp-note.pdf
## MM: ~/R/Pkgs/Rmpfr/inst/doc/log1mexp-note.Rnw
##--> ../man/log1mexp.Rd
log1mexp <- function(a, cutoff = log(2)) ## << log(2) is optimal >>
{
    if(has.na <- any(ina <- is.na(a))) {
	y <- a
	a <- a[ok <- !ina]
    }
    if(any(a < 0))## a == 0  -->  -Inf	(in both cases)
	warning("'a' >= 0 needed")
    tst <- a <= cutoff
    r <- a
    r[ tst] <- log(-expm1(-a[ tst]))
    r[!tst] <- log1p(-exp(-a[!tst]))
    if(has.na) { y[ok] <- r ; y } else r
}

##' @title Compute  f(x) = log(1 + exp(x))  stably and quickly
##--> ../man/log1mexp.Rd
log1pexp <- function(x, c0 = -37, c1 = 18, c2 = 33.3)
{
    if(has.na <- any(ina <- is.na(x))) {
	y <- x
	x <- x[ok <- !ina]
    }
    r <- exp(x)
    if(any(i <- c0 < x & (i1 <- x <= c1)))
	r[i] <- log1p(r[i])
    if(any(i <- !i1 & (i2 <- x <= c2)))
	r[i] <- x[i] + 1/r[i] # 1/exp(x) = exp(-x)
    if(any(i3 <- !i2))
	r[i3] <- x[i3]
    if(has.na) { y[ok] <- r ; y } else r
}


##' The sign of choose(alpha*j,d)*(-1)^(d-j) vectorized in j
##'
##' @title The sign of choose(alpha*j,d)*(-1)^(d-j)
##' @param alpha alpha (scalar) in (0,1]
##' @param j integer vector in {0,..,d}
##' @param d integer (scalar) >= 0
##' @return sign(choose(alpha*j,d)*(-1)^(d-j))
##' @author Marius Hofert
##' Note: If alpha=1, then
##'       sign( choose(alpha*j, d)*(-1)^(d-j) ) == (-1)^(d-j) if j > d and
##'       sign( choose(alpha*j, d)*(-1)^(d-j) ) == 0 if j = 0
signFF <- function(alpha, j, d) {
    stopifnot(0 < alpha, alpha <= 1, d >= 0, 0 <= j)
    res <- numeric(length(j))
    if(alpha == 1) {
	res[j == d] <- 1
	res[j > d] <- (-1)^(d-j)
    } else {
	res[j > d] <- NA # the formula below does not hold {TODO: find correct sign}
        ## we do not need them in dsumSibuya() and other places...
	x <- alpha*j
	ind <- x != floor(x)
	res[ind] <- (-1)^(j[ind]-ceiling(x[ind]))
    }
    res
}

##' Properly compute log(x_1 + .. + x_n) for a given (n x d)-matrix of n row
##' vectors log(x_1),..,log(x_n) (each of dimension d)
##' Here, x_i > 0  for all i
##' @title Properly compute the logarithm of a sum
##' @param lx (n,d)-matrix containing the row vectors log(x_1),..,log(x_n)
##'        each of dimension d
##' @param l.off the offset to subtract and re-add; ideally in the order of
##'        the maximum of each column
##' @return log(x_1 + .. + x_n) [i.e., OF DIMENSION d!!!] computed via
##'         log(sum(x)) = log(sum(exp(log(x))))
##'         = log(exp(log(x_max))*sum(exp(log(x)-log(x_max))))
##'         = log(x_max) + log(sum(exp(log(x)-log(x_max)))))
##'         = lx.max + log(sum(exp(lx-lx.max)))
##'         => VECTOR OF DIMENSION d
##' @author Marius Hofert, Martin Maechler
lsum <- function(lx, l.off) {
    rx <- length(d <- dim(lx))
    if(mis.off <- missing(l.off)) l.off <- {
	if(rx <= 1L)
	    max(lx)
	else if(rx == 2L)
	    apply(lx, 2L, max)
    }
    if(rx <= 1L) { ## vector
	if(is.finite(l.off))
	    l.off + log(sum(exp(lx - l.off)))
	else if(mis.off || is.na(l.off) || l.off == max(lx))
	    l.off # NA || NaN or all lx == -Inf, or max(.) == Inf
	else
	    stop("'l.off  is infinite but not == max(.)")
    } else if(rx == 2L) { ## matrix
	if(any(x.off <- !is.finite(l.off))) {
	    if(mis.off || isTRUE(all.equal(l.off, apply(lx, 2L, max)))) {
		## we know l.off = colMax(.)
		if(all(x.off)) return(l.off)
		r <- l.off
		iok <- which(!x.off)
		l.of <- l.off[iok]
		r[iok] <- l.of + log(colSums(exp(lx[,iok,drop=FALSE] -
						     rep(l.of, each=d[1]))))
		r
	    } else ## explicitly specified l.off differing from colMax(.)
		stop("'l.off' has non-finite values but differs from default max(.)")
	}
	else
	    l.off + log(colSums(exp(lx - rep(l.off, each=d[1]))))
    } else stop("not yet implemented for arrays of rank >= 3")
}

##' Properly compute log(x_1 + .. + x_n) for a given matrix of column vectors
##' log(|x_1|),.., log(|x_n|) and corresponding signs sign(x_1),.., sign(x_n)
##' Here, x_i is of arbitrary sign
##' @title compute logarithm of a sum with signed large coefficients
##' @param lxabs (d,n)-matrix containing the column vectors log(|x_1|),..,log(|x_n|)
##'        each of dimension d
##' @param signs corresponding matrix of signs sign(x_1), .., sign(x_n)
##' @param l.off the offset to subtract and re-add; ideally in the order of max(.)
##' @param strict logical indicating if it should stop on some negative sums
##' @return log(x_1 + .. + x_n) [i.e., of dimension d] computed via
##'         log(sum(x)) = log(sum(sign(x)*|x|)) = log(sum(sign(x)*exp(log(|x|))))
##'         = log(exp(log(x0))*sum(signs*exp(log(|x|)-log(x0))))
##'         = log(x0) + log(sum(signs* exp(log(|x|)-log(x0))))
##'         = l.off   + log(sum(signs* exp(lxabs -  l.off  )))
##' @author Marius Hofert and Martin Maechler
lssum <- function (lxabs, signs, l.off = apply(lxabs, 2, max), strict = TRUE) {
    stopifnot(length(dim(lxabs)) == 2L) # is.matrix(.) generalized
    sum. <- colSums(signs * exp(lxabs - rep(l.off, each=nrow(lxabs))))
    if(anyNA(sum.) || any(sum. <= 0))
        (if(strict) stop else warning)("lssum found non-positive sums")
    l.off + log(sum.)
}


##' Compute Stirling numbers of the 1st kind
##'
##' s(n,k) = (-1)^{n-k} times
##' the number of permutations of 1,2,...,n with exactly k cycles
##'
##' NIST DLMF 26.8 --> http://dlmf.nist.gov/26.8
##'
##' @title  Stirling Numbers of the 1st Kind
##' @param n
##' @param k
##' @return s(n,k)
##' @author Martin Maechler
Stirling1 <- function(n,k)
{
    ## NOTA BENE: There's no "direct" method available here
    stopifnot(length(n) == 1, length(k) == 1)
    if (k < 0 || n < k) stop("'k' must be in 0..n !")
    if(n == 0) return(1)
    if(k == 0) return(0)
    S1 <- function(n,k) {
        if(k == 0 || n < k) return(0)
        if(is.na(S <- St[[n]][k])) {
            ## s(n,k) = s(n-1,k-1) - (n-1) * s(n-1,k) for all n, k >= 0
            St[[n]][k] <<- S <- if(n1 <- n-1L)
                S1(n1, k-1) - n1* S1(n1, k) else 1
        }
        S
    }
    if(compute <- (nt <- length(St <- get("S1.tab", .nacopEnv))) < n) {
        ## extend the "table":
        length(St) <- n
        for(i in (nt+1L):n) St[[i]] <- rep.int(NA_real_, i)
    }
    else compute <- is.na(S <- St[[n]][k])
    if(compute) {
        S <- S1(n,k)
        ## store it back:
        assign("S1.tab", St, envir = .nacopEnv)
    }
    S
}

##' Full Vector of Stirling Numbers of the 1st Kind
##'
##' @title  Stirling1(n,k) for all k = 1..n
##' @param n
##' @return the same as sapply(1:n, Stirling1, n=n)
##' @author Martin Maechler
Stirling1.all <- function(n)
{
    stopifnot(length(n) == 1)
    if(!n) return(numeric(0))
    if(get("S1.full.n", .nacopEnv) < n) {
        assign("S1.full.n", n, envir = .nacopEnv)
        unlist(lapply(seq_len(n), Stirling1, n=n))# which fills "S1.tab"
    }
    else get("S1.tab", .nacopEnv)[[n]]
}

##' Compute Stirling numbers of the 2nd kind
##'
##' S^{(k)}_n = number of ways of partitioning a set of $n$ elements into $k$
##'	non-empty subsets
##' (Abramowitz/Stegun: 24,1,4 (p. 824-5 ; Table 24.4, p.835)
##'   Closed Form : p.824 "C."
##'
##' @title  Stirling Numbers of the 2nd Kind
##' @param n
##' @param k
##' @param method
##' @return S(n,k) = S^{(k)}_n
##' @author Martin Maechler, "direct": May 28 1992
Stirling2 <- function(n,k, method = c("lookup.or.store","direct"))
{
    stopifnot(length(n) == 1, length(k) == 1)
    if (k < 0 || n < k) stop("'k' must be in 0..n !")
    method <- match.arg(method)
    switch(method,
           "direct" = {
               sig <- rep(c(1,-1)*(-1)^k, length.out= k+1) # 1 for k=0; -1 1 (k=1)
               k <- 0:k # (!)
               ga <- gamma(k+1)
               round(sum( sig * k^n /(ga * rev(ga))))
           },
           "lookup.or.store" = {
               if(n == 0) return(1) ## else:
               if(k == 0) return(0)
               S2 <- function(n,k) {
                   if(k == 0 || n < k) return(0)
                   if(is.na(S <- St[[n]][k]))
                       ## S(n,k) = S(n-1,k-1) + k * S(n-1,k)   for all n, k >= 0
                       St[[n]][k] <<- S <- if(n1 <- n-1L)
                           S2(n1, k-1) + k* S2(n1, k) else 1 ## n = k = 1
                   S
               }
               if(compute <- (nt <- length(St <- get("S2.tab", .nacopEnv))) < n) {
                   ## extend the "table":
                   length(St) <- n
                   for(i in (nt+1L):n) St[[i]] <- rep.int(NA_real_, i)
               }
               else compute <- is.na(S <- St[[n]][k])
               if(compute) {
                   S <- S2(n,k)
                   ## store it back:
                   assign("S2.tab", St, envir = .nacopEnv)
               }
               S
           })
}

##' Full Vector of Stirling Numbers of the 2nd Kind
##'
##' @title  Stirling2(n,k) for all k = 1..n
##' @param n
##' @return the same as sapply(1:n, Stirling2, n=n)
##' @author Martin Maechler
Stirling2.all <- function(n)
{
    stopifnot(length(n) == 1)
    if(!n) return(numeric(0))
    if(get("S2.full.n", .nacopEnv) < n) {
        assign("S2.full.n", n, envir = .nacopEnv)
        unlist(lapply(seq_len(n), Stirling2, n=n))# which fills "S2.tab"
    }
    else get("S2.tab", .nacopEnv)[[n]]
}


##' Compute Eulerian numbers (German "Euler Zahlen")  A(n,k)
##'
##' A(n,k) = number of permutations of n with exactly  k ascents (or k descents)
##' --> http://dlmf.nist.gov/26.14
##'
##' @title Eulerian Numbers
##' @param n
##' @param k
##' @param method
##' @return A(n,k) = < n \\ k >
##' @author Martin Maechler, April 2011
Eulerian <- function(n,k, method = c("lookup.or.store","direct"))
{
    stopifnot(length(n) == 1, length(k) == 1)
    if(k < 0 || n < k) stop("'k' must be in 0..n !")
    if(n && k == n) return(0)
    ## have  __ 0 <= k < n __
    method <- match.arg(method)
    switch(method,
	   "direct" = { ## suffers from cancellation eventually ..
	       if(k == 0) return(1)
	       if(k == n) return(0)
	       ## else 0 <= k < n >= 2
	       ## http://dlmf.nist.gov/26.14.E9 :  A(n,k) = A(n, n-1-k),  n >= 1
	       if(k >= (n+1)%/% 2) k <- n-(k+1L)
	       k1 <- k+1L
	       sig <- rep(c(1,-1), length.out = k1) # 1 for k=0; 1 -1 (k=1), ...
	       round(sum( sig * choose(n+1, 0:k) * (k1:1L)^n ))
	   },
	   "lookup.or.store" = {
	       Eul <- function(n,k) {
		   ## Quick return for those that are *not* stored:
		   if(k < 0 || k > n || (0 < n && n == k)) return(0)
		   if(n == 0) return(1)
		   ## now -- 0 <= k < n -- are stored
		   if(is.na(r <- E.[[n]][k1 <- k+1L])) ## compute it (via recursion)
		       ## A(n,k) = (k+1)* A(n-1,k) + (n-k)*A(n-1,k-1)	for n >= 2, k >= 0
		       ## http://dlmf.nist.gov/26.14.E8
		       E.[[n]][k1] <<- r <- if(n1 <- n-1L)
			   k1*Eul(n1, k)+ (n-k)* Eul(n1, k-1) else 1 ## n=1, k=0
		   r
	       }
	       if(compute <- (nt <- length(E. <- get("Eul.tab", .nacopEnv))) < n) {
		   ## extend the "table":
		   length(E.) <- n
		   for(i in (nt+1L):n) E.[[i]] <- rep.int(NA_real_, i)
	       }
	       else compute <- is.na(E <- E.[[n]][k+1L])
	       if(compute) {
		   E <- Eul(n,k)
		   ## store it back:
		   assign("Eul.tab", E., envir = .nacopEnv)
	       }
	       E
	   })
}

##' Full Vector of Eulerian Numbers == row of Euler triangle
##'
##' @title Eulerian(n,k) for all k = 0..n-1
##' @param n
##' @return (for n >= 1), the same as sapply(0:(n-1), Eulerian, n=n)
##' @author Martin Maechler, April 2011
Eulerian.all <- function(n)
{
    stopifnot(length(n) == 1, n >= 0)
    if(!n) return(1)
    if(get("Eul.full.n", .nacopEnv) < n) {
        ## FIXME: do the assign() only when the lapply() below does *not* fail
        ##  on.exit( ... ) ?
	assign("Eul.full.n", n, envir = .nacopEnv)
	unlist(lapply(0:(n-1L), Eulerian, n=n))# which fills "Eul.tab"
    }
    else get("Eul.tab", .nacopEnv)[[n]]
}

## Our environment for tables etc:  no hash, as it will contain *few* objects:
.nacopEnv <- new.env(parent=emptyenv(), hash=FALSE)
assign("S2.tab", list(), envir = .nacopEnv) ## S2.tab[[n]][k] == S(n, k)
assign("S1.tab", list(), envir = .nacopEnv) ## S1.tab[[n]][k] == s(n, k)
assign("S2.full.n", 0  , envir = .nacopEnv)
assign("S1.full.n", 0  , envir = .nacopEnv)
assign("Eul.tab", list(), envir = .nacopEnv) ## Eul.tab[[n]][k] == A(n, k) == < n \\ k > (Eulerian)
assign("Eul.full.n", 0	, envir = .nacopEnv)


##' From   http://en.wikipedia.org/wiki/Polylogarithm
##' 1. For integer values of the polylogarithm order, the following
##'   explicit expressions are obtained by repeated application of  z * d/dz
##'   to Li_1(z):
##' ---
##'     {Li}_{1}(z) = -\ln(1-z)
##'     {Li}_{0}(z) = {z \over 1-z}
##'     {Li}_{-1}(z) = {z \over (1-z)^2}
##'     {Li}_{-2}(z) = {z \,(1+z) \over (1-z)^3}
##'     {Li}_{-3}(z) = {z \,(1+4z+z^2) \over (1-z)^4}
##'     {Li}_{-4}(z) = {z \,(1+z) (1+10z+z^2) \over (1-z)^5}.
##' ---
##' Accordingly the polylogarithm reduces to a ratio of polynomials in
##' z, and is therefore a rational function of z, for all nonpositive
##' integer orders. The general case may be expressed as a finite sum:
##' ---
##' {Li}_{-n}(z) = \left(z \,{\partial \over \partial z} \right)^n \frac{z}{1-z} =
##'     = \sum_{k=0}^n k! \,S(n+1,k+1) \left({z \over {1-z}} \right)^{k+1}
##' \ \ (n=0,1,2,\ldots),
##' ---
##' where S(n,k) are the Stirling numbers of the second kind.
##' Equivalent formulae applicable to negative integer orders are
##' (Wood 1992, § 6):
##' ---
##'  {Li}_{-n}(z) = (-1)^{n+1} \sum_{k=0}^n k! S(n+1,k+1) (\frac{-1}{1-z})^{k+1} \
##'     (n=1,2,3,...),
##' and:
##'  {Li}_{-n}(z) = \frac{1}{(1-z)^{n+1}} sum_{k=0}^{n-1} < n \ k >  z^{n-k}
##'               = \frac{z \sum_{k=0}^{n-1} < n \ k >  z^k} {(1-z)^{n+1}},
##' where  < n \ k >  are the  Eulerian numbers.
##' All roots of Li_n(z) are distinct and real; they include z = 0.
##' Duplication formula:  2^{1-s} Li_s(z^2) = Li_s(z) + Li_s(-z).
##'
##' Compute the polylogarithm function \eqn{Li_s(z)}
##'
##' @title Polylogarithm Li_s(z)
##' @param z numeric or complex vector
##' @param s complex number; current implementation is aimed at s \in 0,-1,..
##' @param method a string specifying the algorithm to be used
##' @param logarithm logical specifying to return log(Li.(.)) instead of Li.(.)
##' @param is.log.z logical; if TRUE, the specified 'z' argument is really  w = log(z);
##' 	i.e., compute  Li_s(exp(w))  {and we typically have w < 0  <==> z < 1}
##' @param n.sum  for "sum"--this is more for experiments etc
##' @return numeric/complex vector as \code{z}
##' @author Martin Maechler
polylog <- function(z, s, method = c("default", "sum", "negI-s-Stirling",
			  "negI-s-Eulerian", "negI-s-asymp-w"),
		    logarithm = FALSE, is.log.z = FALSE,
                    is.logmlog = FALSE, asymp.w.order = 0,
		    ## for "sum" -- this is more for experiments etc:
		    n.sum)
{
    if(length(z) == 0 || length(s) == 0)
	return((z+s)[FALSE])# of length 0
    stopifnot(length(s) == 1) # for now
    method <- match.arg(method)
    if(is.log.. <- is.log.z) {
	if(is.logmlog)
	    stop("cannot have *both* 'is.log.z' and 'is.logmlog'")
	## z = e^{w}
	w <- z
    } else if(is.log.. <- is.logmlog) {
	stopifnot((lw <- z) < 0)
	w <- -exp(lw)
    }
    if(is.log..) z <- exp(w)

    if(s == 2 && method == "default")## Dilog aka Dilogarithm, from gsl pkg -> GSL = GNU Scientific Library
        return(if(is.numeric(z)) dilog(z) else complex_dilog(z))
    if(method == "default")
        method <- if(s == as.integer(s) && s <= 1)
                      "negI-s-Stirling" else "sum"
    if(method == "sum") {
	stopifnot((Mz <- Mod(z)) <= 1, Mz < 1 | Re(s) > 1,
		  n.sum > 99, length(n.sum) == 1)
	p <- polynEval((1:n.sum)^-s, z)
	if(logarithm) (if(is.log..) w else log(z)) +log(p) else z*p
    } else {
	## "negI"-methods:  s \in {1, 0, -1, -2, ....}	 "[neg]ative [I]nteger"
	stopifnot(s == as.integer(s), s <= 1)
	if(s == 1) { ## result = -log(1 -z) = -log(1 - exp(w)) = -log1mexp(-w)
	    r <- if(is.log..) -log1mexp(-w) else -log1p(-z)
	    return(if(logarithm) log(r) else r)
	}
	## s <= 0:

	## i.z := (1 - z) = 1 - exp(w)
	i.z <- if(is.log.z) -expm1(w) else (1 - z)
	n <- -as.integer(s)
	switch(method,
	       "negI-s-Stirling" =
	   {
	       r <- z/i.z ## = z/(1 - z)
	       ## if(n == 0) return(r)
	       ## k1 <- seq_len(n+1)# == k+1, k = 0...n
	       fac.k <- cumprod(c(1, seq_len(n)))
	       S.n1.k1 <- Stirling2.all(n+1) ## == Stirling2(n+1, k+1)
	       p <- polynEval(fac.k * S.n1.k1, r)
	       ## log(r) = log(z / (1-z)) = logit(z) = qlogis(z),  and if(is.log.z)
	       ## log(r) = log(z / (1-z)) = log(z) - log(1-z) = w - log(1-exp(w)) =
	       ##	 = w - log1mexp(-w)
	       if(logarithm) log(p) + if(is.log..) w - log1mexp(-w) else qlogis(z)
	       else r*p
	   },
	       "negI-s-Eulerian" =
	   {
	       ## Li_n(z) = \frac{z \sum_{k=0}^{n-1} < n \ k >	z^k} {(1-z)^{n+1}},
	       Eu.n <- Eulerian.all(n)
	       ## FIXME? do better for z=exp(w), or large n --> ## log(Eulerian) etc
	       p <- polynEval(Eu.n, z)
	       if(logarithm)
		   log(p) +
		       if(is.log..) w - (n+1)*log1mexp(-w)
		       else log(z) - (n+1)*log1p(-z)
	       else z*p / i.z^(n+1)
	   },
	       "negI-s-asymp-w" =
	       ## MM's asymptotic formula for small w = log(z):
	   {
	       stopifnot(length(asymp.w.order) == 1, asymp.w.order >= 0)
	       if(!is.numeric(z) || z < 0)
		   stop("need z > 0, or rather w = log(z) < 0 for method ",
			method,"; but z=",z)
	       if(!is.log..) w <- log(z)
	       w <- -w # --> w > 0 , z = exp(-w)  as in "paper", lw = log(w), w = exp(lw)
	       if(w >= 1)
		   warning("w << 1 is prerequisite for method ",
			   method, "; but w=", w)
	       n1 <- n+1L
	       if(asymp.w.order == 0) { ## zero-th-order ("simple")
		   if(logarithm) lgamma(n1) - n1*(if(is.logmlog)lw else log(w))
		   else gamma(n1)* if(is.logmlog) exp(-lw*n1) else w^-n1
	       } else if(asymp.w.order == 1) { ## 1st order
		   stop("1-st order asympt: implementation unfinished")
		   r <- if(logarithm) {
		       ## main: lgamma(n+1) - (n+1)*log(w) + c1 ^ w^*(2*ceiling((n+1)/2))
                       ## FIXME: TODO   trm <-
			   if(n %% 2) { ## n odd
			   } else { ## n even
			   }
		   } else gamma(n+1)*w^(-(n+1)) +0-0+0-0+ Bernoulli()/factorial()

	       } else stop("asymp.w.order = ",asymp.w.order," is not implemented")

### TODO:
###  Frank: large theta: even w underflows to 0, ---> use  is.logmlog = TRUE
###
### TODO 2): use *first* order term  ... [ for small w  i.e. z ~<~ 1 ]
	   },

	       stop("unsupported method ", method))
    }
}


### FIXME: Do *cache* the full triangle,  "similarly" to Stirling
##  ------

##' Generate all Bernoulli numbers up to the n-th,
##' using diverse algorithms
##'
##' @title Bernoulli Numbers up to Order n
##' @param n
##' @param method
##' @param precBits
##' @param verbose
##' @return numeric vector of length n, containing B(n)
##' @author Martin Maechler, 25 Jun 2011 (night train Vienna - Zurich)
Bernoulli.all <-
    function(n, method = c("A-T", "sumBin", "sumRamanujan", "asymptotic"),
             precBits = NULL, verbose = getOption("verbose"))
{
    stopifnot(length(n <- as.integer(n)) == 1)
    method <- match.arg(method)
    switch(method,
           "A-T" =
       {
           if(verbose) stopifnot(requireNamespace("MASS"))
           nn <- seq_len(n1 <- n+1L) ## <- FIXME, make this work with Rmpfr optionally
           if(!is.numeric(precBits) || !is.finite(precBits)) {
               B <- numeric(n1)
               Bv <- 1/nn
           } else {
	       stopifnot(requireNamespace("Rmpfr", quietly=TRUE),
			 length(precBits) == 1, precBits >= 10)
	       mpfr <- Rmpfr::mpfr
               B <- mpfr(numeric(n1), precBits=precBits)
               Bv <- mpfr(1, precBits=precBits)/nn
           }
           for(m in seq_len(n1)) {
               ## length(Bv) == n+1+1-m = n+2-m
               if(verbose) { cat(m-1,":"); print(MASS::fractions(Bv)) }
               B[m] <- Bv[1L]
               if(m <= n) ## recursion:
                   Bv <- seq_len(n1-m) * (Bv[-(n1+1L-m)] - Bv[-1L])
           }
       },
           "sumBin" = , "sumRamanujan" = , "asymptotic" =
       {
           B <- c(1, -1/2)
           if(n <= 1) return(B[1:(n+1)])
           Bn <- Bernoulli(n, method=method)#-> fill "Bern.tab" cache
           B <- c(B, numeric(n-2), Bn)
           ##     0:1  2...n-1
           ii <- seq_len((n-1L) %/% 2)
           B[ii*2L] <- get("Bern.tab", .nacopEnv)[[method]][ii]
       },
           stop(gettextf("method '%s' not yet implemented", method), domain=NA)
           )## end{switch}
    B
}

## FIXME: The Akiyama-Tanigawa algorithm formula is numerically >> bad <<

## Instead, use the recursive definition of Bernoulli numbers, or

assign("Bern.tab", list(), envir = .nacopEnv) ## Bern.tab[[method]][n] == Bernoulli_{2n}

Bernoulli <- function(n, method = c("sumBin", "sumRamanujan", "asymptotic"),
                      verbose = FALSE)
{
    if(n <= 1) {
        if(n == 0) 1 else -1/2
    } else if(n %% 2) 0
    else { ## n >= 2, even
	method <- match.arg(method)
	## if(double.precision)
	if(n > 224) return(if(n %% 4) -Inf else Inf) # overflow
	n2 <- n %/% 2
	if(length(Bt <- get("Bern.tab", .nacopEnv)[[method]]) < n2 ||
	   is.na(B <- Bt[n2])) {
	    ## compute it -- and cache it
	    switch(method,
                   "asymptotic" =
               {
                   ## B <- (-1)^(n2+1) * 2*(1 + 2^-n)* exp(lfactorial(n) - n * log(2*pi))
                   B <- (-1)^(n2+1) * 2*exp(lgamma(n+1) + log1p(2^-n + 3^-n) - n * log(2*pi))
                   ## where we replace zeta(n) = 1 + 1/2^n + 1/3^n + 1/4^n + ...
                   ## by   1 + 1/2^n + 1/3^n
                   ## http://en.wikipedia.org/wiki/Bernoulli_number#Asymptotic_approximation
               },
		   "sumBin" =
	       {
		   ## This is R-slow for n ~= 1000, but ok for n ~= 100
		   s <- 0
		   binc <- 1
		   n.1 <- n - 1L
		   for(j in 0:n.1) { ## binc == choose(n, j)
                       if(verbose) {
                           cat(sprintf("(n,j)=(%d,%d): Bin.cf= %g", n,j, round(binc)))
                           Bj <- Bernoulli(j)
                           cat(sprintf(" Bj= %g\n", Bj))
                           s <- s + binc * Bj / (n-j+1L)
                       } else s <- s + binc * Bernoulli(j) / (n-j+1L)
		       if(j < n.1)
			   binc <- round(binc * (n-j)/(j+1L))
		   }
		   B <- -s
		   ## Cache it: update the *current* table (updated in the mean time!)
		   Btab <- get("Bern.tab", .nacopEnv)
		   Btab[[method]][n2] <- B
		   assign("Bern.tab", Btab, envir = .nacopEnv)
	       },
		   stop(gettextf("method '%s' not yet implemented", method), domain=NA)
		   )## end{switch}
	}
	B
    }
}


## slightly more efficiently,  Ramanujan's congruences:
## == http://en.wikipedia.org/wiki/Bernoulli_number#Ramanujan.27s_congruences
##------------------------------------------------------------------------
## Ramanujan's congruences

## The following relations, due to Ramanujan, provide a more efficient method for calculating Bernoulli numbers:

##     {{m+3}\choose{m}}B_m=\begin{cases} {{m+3}\over3}-\sum\limits_{j=1}^{m/6}{m+3\choose{m-6j}}B_{m-6j}, & \mbox{if}\ m\equiv 0\pmod{6};\\ {{m+3}\over3}-\sum\limits_{j=1}^{(m-2)/6}{m+3\choose{m-6j}}B_{m-6j}, & \mbox{if}\ m\equiv 2\pmod{6};\\ -{{m+3}\over6}-\sum\limits_{j=1}^{(m-4)/6}{m+3\choose{m-6j}}B_{m-6j}, & \mbox{if}\ m\equiv 4\pmod{6}.\end{cases}
##------------------------------------------------------------------------

##---> Free Python implementations are here
##>> http://en.literateprograms.org/Bernoulli_numbers_%28Python%29
##--> MM: see ../misc/Bernoulli_numbers_(Python)/


debye1 <- function(x) {
    ## gsl's debye_1() gives *errors* on NaN/NA/Inf
    if(any(nfin <- !(fin <- is.finite(x)))) {
	d <- abs(x)
	d[fin] <- debye_1(d[fin])
	if(any(isI <- d[nfin] == Inf))
	    d[nfin][which(isI)] <- 0 # which(.) drops NAs
	if(length(neg <- which(x < 0))) # NA's !
	    d[neg] <- d[neg] - x[neg]/2
	d
    }
    else {
	d <- debye_1(abs(x))
	## ifelse(x >= 0, d, d - x / 2) ## k = 1, Frees & Valdez 1998, p.9
	d - (x<0) * x / 2
    }
}


debye2 <- function(x) {
    ## gsl's debye_2() gives *errors* on NaN/NA/Inf
    if(any(nfin <- !(fin <- is.finite(x)))) {
	d <- abs(x)
	d[fin] <- debye_2(d[fin])
	if(any(isI <- d[nfin] == Inf))
	    d[nfin][which(isI)] <- 0 # which(.) drops NAs
	if(length(neg <- which(x < 0))) # NA's !
	    d[neg] <- d[neg] - 2/3 * x[neg]
	d
    }
    else {
	## k = 2, Frees & Valdez 1998, p.9
	d <- debye_2(abs(x))
	d - 2/3 * (x<0) * x
    }
}

Try the copula package in your browser

Any scripts or data that you put into this service are public.

copula documentation built on Sept. 11, 2024, 7:48 p.m.