R/cor.dendlist.R

Defines functions cor_FM_index cor_common_nodes cor.dendlist

Documented in cor_common_nodes cor.dendlist cor_FM_index

# Copyright (C) Tal Galili
#
# This file is part of dendextend.
#
# dendextend is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# dendextend is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
#  A copy of the GNU General Public License is available at
#  http://www.r-project.org/Licenses/
#





#' @title Correlation matrix between a list of trees.
#' @export
#' @description
#' A correlation matrix between a list of trees.
#'
#' Assumes the labels in the two trees fully match. If they do not
#' please first use \link{intersect_trees} to have them matched.
#'
#' @param dend a \link{dendlist} of trees
#' @param method a character string indicating which correlation coefficient
#' is to be computed. One of "cophenetic" (default),  "baker",
#' "common_nodes", or "FM_index".
#' It can be abbreviated.
#' @param ... passed to cor functions.
#'
#' @seealso
#' \link{cophenetic}, \link{cor_cophenetic}, \link{cor_bakers_gamma},
#' \link{cor_common_nodes}, \link{cor_FM_index}
#' @return
#' A correlation matrix between the different trees
#'
#' @examples
#'
#' \dontrun{
#'
#' set.seed(23235)
#' ss <- sample(1:150, 10)
#' dend1 <- iris[ss, -5] %>%
#'   dist() %>%
#'   hclust("com") %>%
#'   as.dendrogram()
#' dend2 <- iris[ss, -5] %>%
#'   dist() %>%
#'   hclust("single") %>%
#'   as.dendrogram()
#' dend3 <- iris[ss, -5] %>%
#'   dist() %>%
#'   hclust("ave") %>%
#'   as.dendrogram()
#' dend4 <- iris[ss, -5] %>%
#'   dist() %>%
#'   hclust("centroid") %>%
#'   as.dendrogram()
#' #    cutree(dend1)
#' cors <- cor.dendlist(dendlist(d1 = dend1, d2 = dend2, d3 = dend3, d4 = dend4))
#'
#' cors
#'
#' # a nice plot for them:
#' library(corrplot)
#' corrplot(cor.dendlist(dend1234), "pie", "lower")
#' }
cor.dendlist <- function(dend, method = c("cophenetic", "baker", "common_nodes", "FM_index"), ...) {
  if (!is.dendlist(dend)) stop("dend needs to be a dendlist object")
  method <- match.arg(method)

  n_list <- length(dend)
  the_cor <- matrix(1, n_list, n_list)
  pairwise_combn <- combn(n_list, 2)

  for (i in 1:ncol(pairwise_combn)) {
    l1 <- pairwise_combn[1, i]
    l2 <- pairwise_combn[2, i]
    the_cor[l1, l2] <- the_cor[l2, l1] <-
      switch(method,
        cophenetic = cor_cophenetic(dend[[l1]], dend[[l2]], ...),
        baker = cor_bakers_gamma(dend[[l1]], dend[[l2]], ...),
        common_nodes = cor_common_nodes(dend[[l1]], dend[[l2]], ...),
        FM_index = cor_FM_index(dend[[l1]], dend[[l2]], ...)
      )
  }

  rownames(the_cor) <- colnames(the_cor) <- names(dend)

  the_cor
}




# edgeset_dist


#' Proportion of commong nodes between two trees
#' @export
#' @description
#' Calculates the number of nodes, in each tree, that are common (i.e.: that have the same exact list of labels).
#' The correlation is between 0 (actually, 2*(nnodes-1)/(2*nnodes), for two trees with
#' the same list of labels - since the top node will always be identical for them).
#' Where 1 means that every node in the one tree, has a node in the other tree with the exact
#' same list of labels.
#' Notice this measure is non-parameteric (it ignores the heights and relative position of the nodes).
#'
#' @param dend1 a dendrogram.
#' @param dend2 a dendrogram.
#' @param ... not used.
#'
#' @return
#' A correlation value between 0 to 1 (almost identical trees)
#' @seealso \link{distinct_edges}, \link{cor.dendlist}
#'
#' @examples
#'
#' set.seed(23235)
#' ss <- sample(1:150, 10)
#' hc1 <- iris[ss, -5] %>%
#'   dist() %>%
#'   hclust("com")
#' hc2 <- iris[ss, -5] %>%
#'   dist() %>%
#'   hclust("single")
#' dend1 <- as.dendrogram(hc1)
#' dend2 <- as.dendrogram(hc2)
#'
#' cor_cophenetic(dend1, dend2)
#' cor_common_nodes(dend1, dend2)
#' tanglegram(dend1, dend2)
#' # we can see we have only two nodes which are different...
cor_common_nodes <- function(dend1, dend2, ...) {
  # dendextend:::edgeset_dist
  n_diff_nodes <- edgeset_dist(dend1, dend2)
  nnodes_trees <- nnodes(dend1) + nnodes(dend2)

  (nnodes_trees - n_diff_nodes) / nnodes_trees
}







#' Correlation of FM_index for some k
#' @export
#' @description
#' Calculates the FM_index Correlation for some k.
#'
#'
#' @param dend1 a dendrogram.
#' @param dend2 a dendrogram.
#' @param k an integer (number of clusters to cut the tree)
#' @param ... not used.
#'
#' @return
#' A correlation value between 0 to 1 (almost identical clusters for some k)
#' @seealso \link{FM_index}, \link{cor.dendlist}, \link{Bk}
#'
#' @examples
#'
#' set.seed(23235)
#' ss <- sample(1:150, 10)
#' hc1 <- iris[ss, -5] %>%
#'   dist() %>%
#'   hclust("com")
#' hc2 <- iris[ss, -5] %>%
#'   dist() %>%
#'   hclust("single")
#' dend1 <- as.dendrogram(hc1)
#' dend2 <- as.dendrogram(hc2)
#'
#' cor_FM_index(dend1, dend2, k = 2)
#' cor_FM_index(dend1, dend2, k = 3)
#' cor_FM_index(dend1, dend2, k = 4)
cor_FM_index <- function(dend1, dend2, k, ...) {
  if (missing(k)) stop("You need to specifiy k.")
  # dendextend:::edgeset_dist
  clus1 <- cutree(dend1, k = k)[order.dendrogram(dend1)]
  clus2 <- cutree(dend2, k = k)[order.dendrogram(dend2)]

  if (all(clus1 == 0) | all(clus2 == 0)) {
    warning("Can't calculate k - returning NA")
    return(NA)
  }

  FM_index(clus1, clus2, assume_sorted_vectors = TRUE)
}

Try the dendextend package in your browser

Any scripts or data that you put into this service are public.

dendextend documentation built on May 9, 2021, 1:06 a.m.