Nothing
#' Subset rows using their positions
#'
#' @description
#' `slice()` lets you index rows by their (integer) locations. It allows you
#' to select, remove, and duplicate rows. It is accompanied by a number of
#' helpers for common use cases:
#'
#' * `slice_head()` and `slice_tail()` select the first or last rows.
#' * `slice_sample()` randomly selects rows.
#' * `slice_min()` and `slice_max()` select rows with the smallest or largest
#' values of a variable.
#'
#' If `.data` is a [grouped_df], the operation will be performed on each group,
#' so that (e.g.) `slice_head(df, n = 5)` will select the first five rows in
#' each group.
#'
#' @details
#' Slice does not work with relational databases because they have no
#' intrinsic notion of row order. If you want to perform the equivalent
#' operation, use [filter()] and [row_number()].
#'
#' @family single table verbs
#' @inheritParams args_by
#' @inheritParams arrange
#' @inheritParams filter
#' @param ... For `slice()`: <[`data-masking`][rlang::args_data_masking]>
#' Integer row values.
#'
#' Provide either positive values to keep, or negative values to drop.
#' The values provided must be either all positive or all negative.
#' Indices beyond the number of rows in the input are silently ignored.
#'
#' For `slice_*()`, these arguments are passed on to methods.
#'
#' @param n,prop Provide either `n`, the number of rows, or `prop`, the
#' proportion of rows to select. If neither are supplied, `n = 1` will be
#' used. If `n` is greater than the number of rows in the group
#' (or `prop > 1`), the result will be silently truncated to the group size.
#' `prop` will be rounded towards zero to generate an integer number of
#' rows.
#'
#' A negative value of `n` or `prop` will be subtracted from the group
#' size. For example, `n = -2` with a group of 5 rows will select 5 - 2 = 3
#' rows; `prop = -0.25` with 8 rows will select 8 * (1 - 0.25) = 6 rows.
#' @return
#' An object of the same type as `.data`. The output has the following
#' properties:
#'
#' * Each row may appear 0, 1, or many times in the output.
#' * Columns are not modified.
#' * Groups are not modified.
#' * Data frame attributes are preserved.
#' @section Methods:
#' These function are **generic**s, which means that packages can provide
#' implementations (methods) for other classes. See the documentation of
#' individual methods for extra arguments and differences in behaviour.
#'
#' Methods available in currently loaded packages:
#'
#' * `slice()`: \Sexpr[stage=render,results=rd]{dplyr:::methods_rd("slice")}.
#' * `slice_head()`: \Sexpr[stage=render,results=rd]{dplyr:::methods_rd("slice_head")}.
#' * `slice_tail()`: \Sexpr[stage=render,results=rd]{dplyr:::methods_rd("slice_tail")}.
#' * `slice_min()`: \Sexpr[stage=render,results=rd]{dplyr:::methods_rd("slice_min")}.
#' * `slice_max()`: \Sexpr[stage=render,results=rd]{dplyr:::methods_rd("slice_max")}.
#' * `slice_sample()`: \Sexpr[stage=render,results=rd]{dplyr:::methods_rd("slice_sample")}.
#' @export
#' @examples
#' # Similar to head(mtcars, 1):
#' mtcars %>% slice(1L)
#' # Similar to tail(mtcars, 1):
#' mtcars %>% slice(n())
#' mtcars %>% slice(5:n())
#' # Rows can be dropped with negative indices:
#' slice(mtcars, -(1:4))
#'
#' # First and last rows based on existing order
#' mtcars %>% slice_head(n = 5)
#' mtcars %>% slice_tail(n = 5)
#'
#' # Rows with minimum and maximum values of a variable
#' mtcars %>% slice_min(mpg, n = 5)
#' mtcars %>% slice_max(mpg, n = 5)
#'
#' # slice_min() and slice_max() may return more rows than requested
#' # in the presence of ties.
#' mtcars %>% slice_min(cyl, n = 1)
#' # Use with_ties = FALSE to return exactly n matches
#' mtcars %>% slice_min(cyl, n = 1, with_ties = FALSE)
#' # Or use additional variables to break the tie:
#' mtcars %>% slice_min(tibble(cyl, mpg), n = 1)
#'
#' # slice_sample() allows you to random select with or without replacement
#' mtcars %>% slice_sample(n = 5)
#' mtcars %>% slice_sample(n = 5, replace = TRUE)
#'
#' # you can optionally weight by a variable - this code weights by the
#' # physical weight of the cars, so heavy cars are more likely to get
#' # selected
#' mtcars %>% slice_sample(weight_by = wt, n = 5)
#'
#' # Group wise operation ----------------------------------------
#' df <- tibble(
#' group = rep(c("a", "b", "c"), c(1, 2, 4)),
#' x = runif(7)
#' )
#'
#' # All slice helpers operate per group, silently truncating to the group
#' # size, so the following code works without error
#' df %>% group_by(group) %>% slice_head(n = 2)
#'
#' # When specifying the proportion of rows to include non-integer sizes
#' # are rounded down, so group a gets 0 rows
#' df %>% group_by(group) %>% slice_head(prop = 0.5)
#'
#' # Filter equivalents --------------------------------------------
#' # slice() expressions can often be written to use `filter()` and
#' # `row_number()`, which can also be translated to SQL. For many databases,
#' # you'll need to supply an explicit variable to use to compute the row number.
#' filter(mtcars, row_number() == 1L)
#' filter(mtcars, row_number() == n())
#' filter(mtcars, between(row_number(), 5, n()))
slice <- function(.data, ..., .by = NULL, .preserve = FALSE) {
check_by_typo(...)
by <- enquo(.by)
if (!quo_is_null(by) && !is_false(.preserve)) {
abort("Can't supply both `.by` and `.preserve`.")
}
UseMethod("slice")
}
#' @export
slice.data.frame <- function(.data, ..., .by = NULL, .preserve = FALSE) {
check_dots_unnamed()
dots <- enquos(...)
by <- compute_by(
by = {{ .by }},
data = .data,
by_arg = the$slice_by_arg,
data_arg = ".data"
)
loc <- slice_rows(.data, dots, by)
dplyr_row_slice(.data, loc, preserve = .preserve)
}
#' @export
#' @rdname slice
slice_head <- function(.data, ..., n, prop, by = NULL) {
check_dot_by_typo(...)
check_slice_unnamed_n_prop(..., n = n, prop = prop)
UseMethod("slice_head")
}
#' @export
slice_head.data.frame <- function(.data, ..., n, prop, by = NULL) {
check_dots_empty0(...)
size <- get_slice_size(n = n, prop = prop)
idx <- function(n) {
seq2(1, size(n))
}
dplyr_local_error_call()
dplyr_local_slice_by_arg("by")
slice(.data, idx(dplyr::n()), .by = {{ by }})
}
#' @export
#' @rdname slice
slice_tail <- function(.data, ..., n, prop, by = NULL) {
check_dot_by_typo(...)
check_slice_unnamed_n_prop(..., n = n, prop = prop)
UseMethod("slice_tail")
}
#' @export
slice_tail.data.frame <- function(.data, ..., n, prop, by = NULL) {
check_dots_empty0(...)
size <- get_slice_size(n = n, prop = prop)
idx <- function(n) {
seq2(n - size(n) + 1, n)
}
dplyr_local_error_call()
dplyr_local_slice_by_arg("by")
slice(.data, idx(dplyr::n()), .by = {{ by }})
}
#' @export
#' @rdname slice
#' @param order_by <[`data-masking`][rlang::args_data_masking]> Variable or
#' function of variables to order by. To order by multiple variables, wrap
#' them in a data frame or tibble.
#' @param with_ties Should ties be kept together? The default, `TRUE`,
#' may return more rows than you request. Use `FALSE` to ignore ties,
#' and return the first `n` rows.
#' @param na_rm Should missing values in `order_by` be removed from the result?
#' If `FALSE`, `NA` values are sorted to the end (like in [arrange()]), so
#' they will only be included if there are insufficient non-missing values to
#' reach `n`/`prop`.
slice_min <- function(.data, order_by, ..., n, prop, by = NULL, with_ties = TRUE, na_rm = FALSE) {
check_required(order_by)
check_dot_by_typo(...)
check_slice_unnamed_n_prop(..., n = n, prop = prop)
check_bool(with_ties)
check_bool(na_rm)
UseMethod("slice_min")
}
#' @export
slice_min.data.frame <- function(.data, order_by, ..., n, prop, by = NULL, with_ties = TRUE, na_rm = FALSE) {
check_dots_empty0(...)
size <- get_slice_size(n = n, prop = prop)
dplyr_local_error_call()
dplyr_local_slice_by_arg("by")
slice(
.data,
.by = {{ by }},
local({
n <- dplyr::n()
order_by <- {{ order_by }}
vec_check_size(order_by, size = n)
slice_rank_idx(
order_by,
size(n),
direction = "asc",
with_ties = !!with_ties,
na_rm = !!na_rm
)
})
)
}
#' @export
#' @rdname slice
slice_max <- function(.data, order_by, ..., n, prop, by = NULL, with_ties = TRUE, na_rm = FALSE) {
check_required(order_by)
check_dot_by_typo(...)
check_slice_unnamed_n_prop(..., n = n, prop = prop)
check_bool(with_ties)
check_bool(na_rm)
UseMethod("slice_max")
}
#' @export
slice_max.data.frame <- function(.data, order_by, ..., n, prop, by = NULL, with_ties = TRUE, na_rm = FALSE) {
check_dots_empty0(...)
size <- get_slice_size(n = n, prop = prop)
dplyr_local_error_call()
dplyr_local_slice_by_arg("by")
slice(
.data,
.by = {{ by }},
local({
n <- dplyr::n()
order_by <- {{ order_by }}
vec_check_size(order_by, size = n)
slice_rank_idx(
order_by,
size(n),
direction = "desc",
with_ties = !!with_ties,
na_rm = !!na_rm
)
})
)
}
#' @export
#' @rdname slice
#' @param replace Should sampling be performed with (`TRUE`) or without
#' (`FALSE`, the default) replacement.
#' @param weight_by <[`data-masking`][rlang::args_data_masking]> Sampling
#' weights. This must evaluate to a vector of non-negative numbers the same
#' length as the input. Weights are automatically standardised to sum to 1.
slice_sample <- function(.data, ..., n, prop, by = NULL, weight_by = NULL, replace = FALSE) {
check_dot_by_typo(...)
check_slice_unnamed_n_prop(..., n = n, prop = prop)
check_bool(replace)
UseMethod("slice_sample")
}
#' @export
slice_sample.data.frame <- function(.data, ..., n, prop, by = NULL, weight_by = NULL, replace = FALSE) {
check_dots_empty0(...)
size <- get_slice_size(n = n, prop = prop, allow_outsize = replace)
dplyr_local_error_call()
dplyr_local_slice_by_arg("by")
slice(
.data,
.by = {{ by }},
local({
weight_by <- {{ weight_by }}
n <- dplyr::n()
if (!is.null(weight_by)) {
vec_check_size(weight_by, size = n)
}
sample_int(n, size(n), replace = !!replace, wt = weight_by)
})
)
}
# helpers -----------------------------------------------------------------
slice_rows <- function(data,
dots,
by,
error_call = caller_env(),
user_env = caller_env(2)) {
error_call <- dplyr_error_call(error_call)
mask <- DataMask$new(data, by, "slice", error_call = error_call)
on.exit(mask$forget(), add = TRUE)
chunks <- slice_eval(mask, dots, error_call = error_call, user_env = user_env)
slice_indices <- slice_combine(chunks, dots, mask = mask, error_call = error_call)
vec_c(!!!slice_indices, .ptype = integer())
}
is_slice_call <- function(error_call) {
is_slice <- TRUE
if (is_environment(error_call) && !identical(error_call$.Generic, "slice")) {
is_slice <- FALSE
}
is_slice
}
slice_eval <- function(mask,
dots,
error_call = caller_env(),
user_env = caller_env(2)) {
index <- 0L
impl <- function(...) {
n <- ...length2()
out <- vector("list", n)
for (i in seq_len(n)) {
index <<- i
slice_idx <- ...elt2(i)
if (is.matrix(slice_idx) && ncol(slice_idx) == 1) {
lifecycle::deprecate_warn(
when = "1.1.0",
what = I("Slicing with a 1-column matrix"),
env = error_call,
user_env = user_env
)
slice_idx <- slice_idx[, 1]
}
out[[i]] <- vec_as_subscript(
slice_idx,
logical = "error",
character = "error",
arg = as_label(dots[[i]]),
call = NULL # error always chained to slice()
)
}
index <<- 0L
vec_c(!!!out, .ptype = integer())
}
withCallingHandlers(
mask$eval_all(quo(impl(!!!dots))),
error = function(cnd) {
if (inherits(cnd, "vctrs_error_subscript")) {
action <- "process"
} else {
action <- "compute"
}
if (index && is_slice_call(error_call)) {
local_error_context(dots, index, mask = mask)
header <- cnd_bullet_header(action)
} else {
header <- glue("Can't {action} indices.")
}
bullets <- c(header, i = cnd_bullet_cur_group_label())
abort(bullets, call = error_call, parent = cnd)
}
)
}
slice_combine <- function(chunks, dots, mask, error_call = caller_env()) {
rows <- mask$get_rows()
slice_indices <- new_list(length(rows))
withCallingHandlers(
for (group in seq_along(rows)) {
current_rows <- rows[[group]]
loc <- num_as_location(
i = chunks[[group]],
n = length(current_rows),
zero = "remove",
oob = "remove",
missing = "remove",
arg = as_label(dots[[group]]),
call = NULL # error always chained to slice()
)
grp_loc <- current_rows[loc]
grp_loc <- grp_loc[!is.na(grp_loc)]
slice_indices[[group]] <- grp_loc
}, error = function(cnd) {
mask$set_current_group(group)
bullets <- c(
"Can't compute indices.",
i = cnd_bullet_cur_group_label()
)
abort(bullets, call = error_call, parent = cnd)
}
)
slice_indices
}
check_constant <- function(x, name, error_call = caller_env()) {
withCallingHandlers(force(x), error = function(e) {
bullets <- c(
glue("`{name}` must be a constant.")
)
abort(bullets, parent = e, call = error_call)
})
}
check_slice_unnamed_n_prop <- function(..., n, prop, error_call = caller_env()) {
if (!missing(n) || !missing(prop)) {
return(invisible())
}
# Special case to capture e.g. `slice_head(2)`
# Capture dots as quosures so that we can label
dots <- enquos(...)
if (length(dots) == 1L && names2(dots)[[1L]] == "") {
slice_call <- frame_call(frame = error_call)[[1]]
slice_call <- as_label(slice_call)
bullets <- c(
"`n` must be explicitly named.",
i = glue("Did you mean `{slice_call}(n = {as_label(dots[[1]])})`?")
)
abort(bullets, call = error_call)
}
invisible()
}
check_slice_n_prop <- function(n, prop, error_call = caller_env()) {
if (missing(n) && missing(prop)) {
list(type = "n", n = 1L)
} else if (!missing(n) && missing(prop)) {
n <- check_constant(n, "n", error_call = error_call)
if (!is_integerish(n, n = 1) || is.na(n)) {
abort(
glue("`n` must be a round number, not {obj_type_friendly(n)}."),
call = error_call
)
}
list(type = "n", n = n)
} else if (!missing(prop) && missing(n)) {
prop <- check_constant(prop, "prop", error_call = error_call)
if (!is.numeric(prop) || length(prop) != 1 || is.na(prop)) {
abort(
glue("`prop` must be a number, not {obj_type_friendly(prop)}."),
call = error_call
)
}
list(type = "prop", prop = prop)
} else {
abort("Must supply `n` or `prop`, but not both.", call = error_call)
}
}
# Always returns an integer between 0 and the group size
get_slice_size <- function(n, prop, allow_outsize = FALSE, error_call = caller_env()) {
slice_input <- check_slice_n_prop(n, prop, error_call = error_call)
if (slice_input$type == "n") {
if (slice_input$n >= 0) {
if (allow_outsize) {
body <- expr(!!floor(slice_input$n))
} else {
body <- expr(clamp(0, !!floor(slice_input$n), n))
}
} else {
body <- expr(clamp(0, ceiling(n + !!slice_input$n), n))
}
} else if (slice_input$type == "prop") {
if (slice_input$prop >= 0) {
if (allow_outsize) {
body <- expr(floor(!!slice_input$prop * n))
} else {
body <- expr(clamp(0, floor(!!slice_input$prop * n), n))
}
} else {
body <- expr(clamp(0, ceiling(n + !!slice_input$prop * n), n))
}
}
new_function(pairlist2(n = ), body)
}
clamp <- function(min, x, max) {
if (x < min) {
min
} else if (x > max) {
max
} else {
x
}
}
sample_int <- function(n, size, replace = FALSE, wt = NULL) {
if (size == 0L) {
integer(0)
} else {
sample.int(n, size, prob = wt, replace = replace)
}
}
slice_rank_idx <- function(
order_by,
size,
with_ties = TRUE,
direction = c("asc", "desc"),
na_rm = FALSE,
call = caller_env()
) {
direction <- arg_match0(
arg = direction,
values = c("asc", "desc"),
error_call = call
)
# puts missing values at the end
na_value <- if (direction == "asc") "largest" else "smallest"
ties <- if (with_ties) "min" else "sequential"
ranks <- vec_rank(
x = order_by,
ties = ties,
direction = direction,
na_value = na_value
)
keep <- ranks <= size
if (na_rm) {
keep[!vec_detect_complete(order_by)] <- FALSE
}
which <- which(keep)
which[order(ranks[which])]
}
on_load({
# Default used by `slice()`
the$slice_by_arg <- ".by"
})
dplyr_local_slice_by_arg <- function(by_arg, frame = caller_env()) {
local_bindings(slice_by_arg = by_arg, .env = the, .frame = frame)
}
# Backports for R 3.5.0 utils
...length2 <- function(frame = caller_env()) {
dots <- env_get(frame, "...")
if (is_missing(dots)) {
0L
} else {
length(dots)
}
}
...elt2 <- function(i, frame = caller_env()) {
eval_bare(sym(paste0("..", i)), frame)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.