Nothing
#############################################################################
# Copyright (c) 2012 Christophe Dutang, Aurelie Siberchicot,
# Marie Laure Delignette-Muller
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the
# Free Software Foundation, Inc.,
# 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
#
#############################################################################
### plot density functions for various fits
### of continuous distribution(s) (fitdist results)
### on a same dataset
###
### R functions
###
denscomp <- function(ft, xlim, ylim, probability = TRUE, main, xlab, ylab,
datacol, fitlty, fitcol, fitlwd, addlegend = TRUE, legendtext,
xlegend = "topright", ylegend = NULL, demp = FALSE,
dempcol = "black", plotstyle = "graphics",
discrete, fitnbpts = 101, fittype="l", ...)
{
if(inherits(ft, "fitdist"))
{
ft <- list(ft)
}else if(!is.list(ft))
{
stop("argument ft must be a list of 'fitdist' objects")
}else
{
if(any(sapply(ft, function(x) !inherits(x, "fitdist"))))
stop("argument ft must be a list of 'fitdist' objects")
}
# In the future developments, it will be necessary to check that all the fits share the same weights
if(!is.null(ft[[1]]$weights))
stop("denscomp is not yet available when using weights")
# check the 'plotstyle' argument
plotstyle <- match.arg(plotstyle[1], choices = c("graphics", "ggplot"), several.ok = FALSE)
# parameters used in 'hist' function
###### Where are they used - to remove ? !!!!!!!!!!!!!!!!!!!!!!!!
argshistPlotFalse <- c("breaks", "nclass", "include.lowest", "right")
argshistPlotTrue <- c(argshistPlotFalse, "density", "angle", "border", "axes", "labels")
# manage default parameters
nft <- length(ft)
if (missing(datacol)) datacol <- NULL
if (missing(fitcol)) fitcol <- 2:(nft+1)
if (missing(fitlty)) fitlty <- 1:nft
if (missing(fitlwd)) fitlwd <- 1
fitcol <- rep(fitcol, length.out=nft)
fitlty <- rep(fitlty, length.out=nft)
fitlwd <- rep(fitlwd, length.out=nft)
fittype <- match.arg(fittype[1], c("p", "l", "o"))
if (missing(xlab))
xlab <- "data"
if (missing(ylab))
ylab <- ifelse(probability, "Density", "Frequency")
if (missing(main))
main <- ifelse(probability, "Histogram and theoretical densities",
"Histogram and theoretical frequencies")
# check data
mydata <- ft[[1]]$data
verif.ftidata <- function(fti)
{
if (any(fti$data != mydata))
stop("All compared fits must have been obtained with the same dataset")
invisible()
}
lapply(ft, verif.ftidata)
# check xlim
if(missing(xlim))
{
xmin <- min(mydata)
xmax <- max(mydata)
xlim <- range(mydata)
}else
{
xmin <- xlim[1]
xmax <- xlim[2]
}
# initiate discrete if not given
if(missing(discrete))
{
discrete <- any(sapply(ft, function(x) x$discrete))
}
if(!is.logical(discrete))
stop("wrong argument 'discrete'.")
if(!is.logical(demp))
stop("wrong argument 'discrete'.")
# some variable definitions
n <- length(mydata)
if(!discrete)
sfin <- seq(xmin, xmax, length.out = fitnbpts[1])
else
sfin <- unique(round(seq(xmin, xmax, length.out = fitnbpts[1]), digits = 0))
reshist <- hist(mydata, plot = FALSE, ...)
if (!discrete)
{
if (probability)
{
scalefactor <- 1
} else
{
if (length(unique(diff(reshist$breaks))) > 1) # wrong histogram and not possible to compute a scale factor
stop("You should not use probability = FALSE with non-equidistant breaks for the histogram !") else
scalefactor <- n * diff(reshist$breaks)[1]
}
# previous writing that gave incorrect output in case of probability = 1 and non-equidistant breaks
# scalefactor <- ifelse(probability, 1, n * diff(reshist$breaks))
} else
{
scalefactor <- ifelse(probability, 1, n)
}
# binwidth <- min(diff(reshist$breaks))
# computation of each fitted distribution
comput.fti <- function(i)
{
fti <- ft[[i]]
para <- c(as.list(fti$estimate), as.list(fti$fix.arg))
distname <- fti$distname
ddistname <- paste("d", distname, sep="")
do.call(ddistname, c(list(sfin), as.list(para))) * scalefactor
}
fitteddens <- sapply(1:nft, comput.fti)
if(NCOL(fitteddens) != nft || NROW(fitteddens) != length(sfin))
stop("problem when computing fitted densities.")
# check ylim
if (missing(ylim))
{
if(!probability)
if (discrete)
{
ylim <- c(0, max(as.numeric(table(mydata))))
} else
{
ylim <- c(0, max(reshist$counts))
}
else # so if probability
{
if (discrete)
{
ylim <- c(0, max(as.numeric(table(mydata))/length(mydata)))
} else
{
ylim <- c(0, max(reshist$density))
}
}
ylim <- range(ylim, fitteddens)
}else
ylim <- range(ylim) # in case of users enter a bad ylim
# check legend parameters if added
if(missing(legendtext))
{
legendtext <- sapply(ft, function(x) x$distname)
if(length(legendtext) != length(unique(legendtext)))
legendtext <- paste(legendtext, sapply(ft, function(x) toupper(x$method)), sep="-")
if(length(legendtext) != length(unique(legendtext)))
legendtext <- paste(legendtext, 1:nft, sep="-")
}
# forces demp to TRUE if discrete is TRUE
if(discrete)
demp <- TRUE
#add empirical density/fmp to legend vectors
if(demp)
{
legendtext <- c(legendtext, "emp.")
fitlty <- c(fitlty, 1)
fitlwd <- c(fitlwd, 1)
fitcol <- c(fitcol, dempcol)
}
if(plotstyle == "graphics") {
######## plot if plotstyle=='graphics' ########
if(!discrete)
{
#main plotting
reshist <- hist(mydata, main = main, xlab = xlab, ylab = ylab, xlim = xlim, ylim = ylim, col = datacol, probability = probability, ...)
#plot fitted densities (line)
for(i in 1:nft)
lines(sfin, fitteddens[,i], lty=fitlty[i], col=fitcol[i], lwd=fitlwd[i], ...)
#plot empirical density
if(demp)
lines(density(mydata)$x, density(mydata)$y * scalefactor, col=dempcol)
if (addlegend)
legend(x=xlegend, y=ylegend, bty="n", legend=legendtext, lty=fitlty, col=fitcol, lwd=fitlwd, ...)
}else # so if discrete
{
#main plotting
# plotting of an empty histogram
reshist <- hist(mydata, main = main, xlab = xlab, ylab = ylab, xlim = xlim, ylim = ylim, border = "white",
probability = probability, ...)
eps <- diff(range(sfin))/200
if(fittype %in% c("l", "o"))
{
#plot fitted mass probability functions (line)
for(i in 1:nft)
lines(sfin+(i)*eps, fitteddens[,i], lty=fitlty[i], col=fitcol[i], lwd=fitlwd[i], type="h", ...)
#plot empirical mass probability function
if(demp)
{
empval <- sort(unique(mydata))
empprob <- as.numeric(table(mydata))/length(mydata) * scalefactor
lines(empval, empprob, col=dempcol, type="h")
}
}
if(fittype %in% c("p", "o"))
{
#plot fitted mass probability functions (point)
for(i in 1:nft)
points(sfin+(i)*eps, fitteddens[,i], col=fitcol[i], pch=1)
#plot empirical density
if(demp)
{
empval <- sort(unique(mydata))
empprob <- as.numeric(table(mydata))/length(mydata) * scalefactor
points(empval, empprob, col=dempcol, pch=1)
}
}
if (addlegend && fittype %in% c("l", "o"))
legend(x=xlegend, y=ylegend, bty="n", legend=legendtext, lty=fitlty, col=fitcol, lwd=fitlwd, ...)
if (addlegend && fittype == "p")
legend(x=xlegend, y=ylegend, bty="n", legend=legendtext, pch=1, col=fitcol, ...)
}
invisible()
} else if (!requireNamespace("ggplot2", quietly = TRUE)) {
stop("ggplot2 needed for this function to work with plotstyle = 'ggplot'. Please install it", call. = FALSE)
} else {
######## plot if plotstyle=='ggplot' ########
# recode the legend position according to available positions in ggplot2
if(xlegend %in% c("topleft", "bottomleft"))
xlegend <- "left"
if(xlegend %in% c("topright", "bottomright"))
xlegend <- "right"
# the default colors of the bars is the same as panel.background.fill in theme_grey()
if(is.null(datacol))
datacol <- "grey92"
if (!discrete)
{
# structure the fitteddens in a relevant data.frame
fitteddens <- as.data.frame(fitteddens)
colnames(fitteddens) <- unlist(lapply(ft, function(X) X["distname"]))
fitteddens <- stack(fitteddens)
fitteddens$sfin <- sfin # sfin is recycled in the standard fashion
fitteddens$ind <- factor(fitteddens$ind, levels = unique(fitteddens$ind)) # reorder levels in the appearance order of the input
if(demp) # bind empirical data if demp is TRUE
fitteddens <- rbind(fitteddens, data.frame(values = density(mydata)$y * scalefactor, ind = "demp", sfin = density(mydata)$x))
histdata <- data.frame(values = mydata, ind = "hist", sfin = mydata) # the added data must have the same column names as the main data to be compatible with ggplot
ggdenscomp <-
ggplot2::ggplot(fitteddens, ggplot2::aes_(quote(sfin), quote(values), group = quote(ind), colour = quote(ind))) +
ggplot2::xlab(xlab) +
ggplot2::ylab(ylab) +
ggplot2::ggtitle(main) +
ggplot2::coord_cartesian(xlim = c(xlim[1], xlim[2]), ylim = c(ylim[1], ylim[2])) +
{if(probability) ggplot2::geom_histogram(data = histdata, ggplot2::aes_(quote(values), quote(ggplot2::after_stat(density))), breaks = reshist$breaks, boundary = 0, show.legend = FALSE, col = "black", alpha = 1, fill = datacol)
else ggplot2::geom_histogram(data = histdata, ggplot2::aes_(quote(values), quote(..count..)), breaks = reshist$breaks, boundary = 0, show.legend = FALSE, col = "black", alpha = 1, fill = datacol)} +
ggplot2::geom_line(data = fitteddens, ggplot2::aes_(linetype = quote(ind), colour = quote(ind), size = quote(ind))) +
ggplot2::guides(colour = ggplot2::guide_legend(title = NULL)) +
ggplot2::guides(linetype = ggplot2::guide_legend(title = NULL)) +
ggplot2::guides(size = ggplot2::guide_legend(title = NULL)) +
ggplot2::theme(plot.title = ggplot2::element_text(hjust = 0.5)) +
{if(addlegend) ggplot2::theme(legend.position = c(xlegend, ylegend)) else ggplot2::theme(legend.position = "none")} +
ggplot2::scale_color_manual(values = fitcol, labels = legendtext) +
ggplot2::scale_linetype_manual(values = fitlty, labels = legendtext) +
ggplot2::scale_size_manual(values = fitlwd, labels = legendtext)
return(ggdenscomp)
} else
{
eps <- diff(range(sfin))/200
# structure the fitteddens in a relevant data.frame
fitteddens <- as.data.frame(fitteddens)
colnames(fitteddens) <- unlist(lapply(ft, function(X) X["distname"]))
fitteddens <- stack(fitteddens)
fitteddens$ind <- factor(fitteddens$ind, levels = unique(fitteddens$ind)) # reorder levels in the appearance order of the input
fitteddens$sfin <- sfin + sapply(fitteddens$ind, function(X) which(X == levels(fitteddens$ind))) *eps # sfin is recycled in the standard fashion
if(demp) # bind empirical data if demp is TRUE
fitteddens <- rbind(fitteddens, data.frame(values = as.numeric(table(mydata))/length(mydata) * scalefactor,
ind = "demp",
sfin = as.numeric(names(table(mydata)))))
ggdenscomp <-
ggplot2::ggplot(fitteddens, ggplot2::aes_(quote(sfin), quote(values), group = quote(ind), colour = quote(ind))) +
ggplot2::xlab(xlab) +
ggplot2::ylab(ylab) +
ggplot2::ggtitle(main) +
ggplot2::coord_cartesian(xlim = c(xlim[1], xlim[2]), ylim = c(ylim[1], ylim[2])) +
{if(fittype %in% c("l", "o")) ggplot2::geom_segment(data = fitteddens, ggplot2::aes_(x = quote(sfin), xend = quote(sfin), y = 0, yend = quote(values), linetype = quote(ind), size = quote(ind)))} +
{if(fittype %in% c("p", "o")) ggplot2::geom_point(data = fitteddens, ggplot2::aes_(x = quote(sfin), y = quote(values), colour = quote(ind)), shape = 1)} +
ggplot2::guides(colour = ggplot2::guide_legend(title = NULL)) +
ggplot2::guides(linetype = ggplot2::guide_legend(title = NULL)) +
ggplot2::guides(size = ggplot2::guide_legend(title = NULL)) +
ggplot2::theme(plot.title = ggplot2::element_text(hjust = 0.5)) +
{if(addlegend) ggplot2::theme(legend.position = c(xlegend, ylegend)) else ggplot2::theme(legend.position = "none")} +
ggplot2::scale_color_manual(values = fitcol, labels = legendtext) +
ggplot2::scale_linetype_manual(values = fitlty, labels = legendtext) +
ggplot2::scale_size_manual(values = fitlwd, labels = legendtext)
return(ggdenscomp)
}
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.