Nothing
## this is the new implementation of the Penalized B-splines smoother
## which allows the smoother to go to the constant rather than linear
## it can be used for model selection
## Mikis Stasinopoulos, Bob Rigby, Vlasisos Voudoris based Marias Durban idea of
## using double penalies, one of order 2 and one of order 1.
## The second penalty only applies if the fit has edf close to 1
## it tries to imitate Simon Woods's model selection in gam()
## created Aug-2015
#-------------------------------------------------------------------------------
pbz <- function(x, df = NULL, lambda = NULL, control=pbz.control(...), ...)
{
# ------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
## local function
## creates the basis for p-splines
## Paul Eilers' function
#-------------------------------------------------------------------------------
bbase <- function(x, xl, xr, ndx, deg, quantiles=FALSE)
{
tpower <- function(x, t, p)
# Truncated p-th power function
(x - t) ^ p * (x > t)
# DS xl= min, xr=max, ndx= number of points within
# Construct B-spline basis
# if quantiles=TRUE use different bases
dx <- (xr - xl) / ndx # DS increment
if (quantiles) # if true use splineDesign
{
knots <- sort(c(seq(xl-deg*dx, xl, dx),quantile(x, prob=seq(0, 1, length=ndx)), seq(xr, xr+deg*dx, dx)))
B <- splineDesign(knots, x = x, outer.ok = TRUE, ord=deg+1)
return(B)
}
else # if false use Paul's
{
knots <- seq(xl - deg * dx, xr + deg * dx, by = dx)
P <- outer(x, knots, tpower, deg)# calculate the power in the knots
n <- dim(P)[2]
D <- diff(diag(n), diff = deg + 1) / (gamma(deg + 1) * dx ^ deg) #
B <- (-1) ^ (deg + 1) * P %*% t(D)
B
}
}
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
# the main function starts here
scall <- deparse(sys.call())
no.dist.val <- length(table(x))
if (is.matrix(x)) stop("x is a matric declare it as a vector")
lx <- length(x)
control.inter <- if (lx<99) 10 else control$inter # this is to prevent singularities when length(x) is small:change to 99 30-11-11 MS
control$inter <- if (no.dist.val<=control$inter) no.dist.val else control.inter
xl <- min(x)
xr <- max(x)
xmax <- xr + 0.01 * (xr - xl)
xmin <- xl - 0.01 * (xr - xl)
## create the basis
X <- bbase(x, xmin, xmax, control$inter, control$degree, control$quantiles) #
r <- ncol(X)
D <- diff(diag(r), diff=control$order)
D1 <- diff(diag(r))
if(!is.null(df)) # degrees of freedom
{
if (df>(dim(X)[2]-2))
{df <- 3;
warning("The df's exceed the number of columns of the design matrix", "\n", " they are set to 3") }
if (df < 0) warning("the extra df's are set to 0")
df <- if (df < 0) 2 else df+2
}
##
## here we get the gamlss environment and a random name to save
## the starting values for lambda within gamlss()
## get gamlss environment
#--------
rexpr<-regexpr("gamlss",sys.calls())
for (i in 1:length(rexpr)){
position <- i
if (rexpr[i]==1) break}
gamlss.environment <- sys.frame(position)
#--------
## get a random name to use it in the gamlss() environment
#--------
sl <- sample(letters, 4)
fourLetters <- paste(paste(paste(sl[1], sl[2], sep=""), sl[3], sep=""),sl[4], sep="")
startLambdaName <- paste("start.Lambda",fourLetters, sep=".")
## put the starting values in the gamlss()environment
#--------
assign(startLambdaName, control$start, envir=gamlss.environment)
#--------
xvar <- rep(0,length(x)) # zero in the design matrix the rest pass as artributes
attr(xvar, "control") <- control
attr(xvar, "D") <- D
attr(xvar, "D1") <- D1
attr(xvar, "X") <- X
attr(xvar, "x") <- x
attr(xvar, "df") <- df
attr(xvar, "call") <- substitute(gamlss.pbz(data[[scall]], z, w))
attr(xvar, "lambda") <- lambda
attr(xvar, "gamlss.env") <- gamlss.environment
attr(xvar, "NameForLambda") <- startLambdaName
attr(xvar, "class") <- "smooth"
xvar
}
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
# control function for pb()
##------------------------------------------------------------------------------
pbz.control <- function(inter = 20, degree= 3, order = 2, start=c(0.0001,0.0001),
quantiles=FALSE, method=c("ML","GAIC", "GCV"), k=2,
lim=3, ...)
{
if(inter <= 0) {
warning("the value of inter supplied is less than 0, the value of 10 was used instead")
inter <- 10 }
if(degree <= 0) {
warning("the value of degree supplied is less than zero or negative the default value of 3 was used instead")
degree <- 3}
if(order < 2) {
warning("the value of order supplied is less than 2 the default value of 2 was used instead")
order <- 2}
if(k <= 0) {
warning("the value of GAIC/GCV penalty supplied is less than zero the default value of 2 was used instead")
k <- 2}
method <- match.arg(method)
list(inter = inter, degree = degree, order = order, start=start,
quantiles = as.logical(quantiles)[1], method= method,
k=k, lim=lim)
}
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
gamlss.pbz <- function(x, y, w, xeval = NULL, ...)
{
# ------------------------------------------------------------------------------
# functions within
# a simple penalised regression
# this is the original matrix manipulation version but it swiches to QR if it fails
#------------------------------------------------------------------------------
regpen <- function(y, X, w)# original
{
RD <- rbind(R,sqrt(lambda)*D) # matrix
svdRD <- svd(RD) # U 2pxp D pxp V pxp
## take only the important values
rank <- sum(svdRD$d>max(svdRD$d)*.Machine$double.eps^.8)
U1 <- svdRD$u[1:p,1:rank] # U1 p x rank
# I am not sure what are consequances in introducing this ???
y1 <- t(U1)%*%Qy # t(Q)%*%(sqrt(w)*y) # rankxp pxn nx1 => rank x 1 vector
# beta <- svdRD$v[,1:rank] %*%diag(1/svdRD$d[1:rank])%*%y1
beta <- svdRD$v[,1:rank] %*%(y1/svdRD$d[1:rank])
# 1/(svdRD$d^2)
#print((svdRD$v)%*%t(svdRD$v), digits=1)
HH <- (svdRD$u)[1:p,1:rank]%*%t(svdRD$u[1:p,1:rank])
df <- sum(diag(HH))
#cat("df", df, "\n")
df1 <- df2 <- 0
do1order <- FALSE
if (df<=lim) # this is crucial for the cut of point
{
RD <- rbind(R,sqrt(lambda)*D,sqrt(lambda2)*D1) # matrix
RD1 <- rbind(R,sqrt(lambda)*D)
RD2 <- rbind(R,sqrt(lambda2)*D1)
svdRD <- svd(RD) # U 2pxp D pxp V pxp
svdRD1 <- svd(RD1)
svdRD2 <- svd(RD2)
## take only the important values
rank <- sum(svdRD$d>max(svdRD$d)*.Machine$double.eps^.8)
U1 <- svdRD$u[1:p,1:rank] # U1 p x rank
# I am not sure what are consequances in introducing this ???
y1 <- t(U1)%*%Qy # t(Q)%*%(sqrt(w)*y) # rankxp pxn nx1 => rank x 1 vector
beta <- svdRD$v[,1:rank] %*%(y1/svdRD$d[1:rank])
HH <- (svdRD$u)[1:p,1:rank]%*%t(svdRD$u[1:p,1:rank])
HH1 <- (svdRD1$u)[1:p,1:rank]%*%t(svdRD1$u[1:p,1:rank])
HH2 <- (svdRD2$u)[1:p,1:rank]%*%t(svdRD2$u[1:p,1:rank])
df <- sum(diag(HH))
df1 <- sum(diag(HH1))
df2 <- sum(diag(HH2))
do1order <- TRUE
}
fit <- list(beta = beta, edf = df, df1=df1, df2=df2, do1order=do1order)
return(fit)
}
# #-------------------------------------------------------------------------------
# ## function to find lambdas miimizing the local GAIC
fnGAIC <- function(lambda, k)
{
fit <- regpen(y=y, X=X, w=w, lambda=lambda)
fv <- X %*% fit$beta
GAIC <- sum(w*(y-fv)^2)+k*fit$edf
# cat("GAIC", GAIC, "\n")
GAIC
}
# #-------------------------------------------------------------------------------
# ## function to find the lambdas which minimise the local GCV
fnGCV <- function(lambda, k)
{
I.lambda.D <- (1+lambda*UDU$values)
edf <- sum(1/I.lambda.D)
y_Hy2 <- y.y-2*sum((yy^2)/I.lambda.D)+sum((yy^2)/((I.lambda.D)^2))
GCV <- (n*y_Hy2)/(n-k*edf)^2
GCV
}
# #-------------------------------------------------------------------------------
edf1_df <- function(lambda)
{
edf <- sum(1/(1+lambda*UDU$values))
(edf-df)
}
#-------------------------------------------------------------------------------
# the main function starts here
# get the attributes
#w <- ifelse(w>.Machine$double.xmax^.5,.Machine$double.xmax^.5,w )
if (is.null(xeval)) # if no prediction
{
X <- if (is.null(xeval)) as.matrix(attr(x,"X")) #the trick is for prediction
else as.matrix(attr(x,"X"))[seq(1,length(y)),]
xvar <- as.matrix(attr(x,"x")) # x variable
D <- as.matrix(attr(x,"D")) # main penalty
D1 <- as.matrix(attr(x,"D1")) # order 1 penalty
lambda <- as.vector(attr(x,"lambda")) # lambda
df <- as.vector(attr(x,"df")) # degrees of freedom
control <- as.list(attr(x, "control"))
gamlss.env <- as.environment(attr(x, "gamlss.env"))
startLambdaName <- as.character(attr(x, "NameForLambda"))
order <- control$order # the order of the penalty matrix
lambda2 <- control$start[2]
lim <- control$lim
N <- sum(w!=0) # DS+FDB 3-2-14
n <- nrow(X) # the no of observations
p <- ncol(D) # the rows of the penalty matrix
qrX <- qr(sqrt(w)*X, tol=.Machine$double.eps^.8)
R <- qr.R(qrX)
Q <- qr.Q(qrX)
Qy <- t(Q)%*%(sqrt(w)*y)
tau2 <- sig2 <- tau2_2 <- NULL
df1 <- df2 <- 0
# now the action depends on the values of lambda and df
#-------------------------------------------------------------------------------
lambdaS <- get(startLambdaName, envir=gamlss.env) ## geting the starting value
if (lambdaS[1]>=1e+07) lambda <- 1e+07 # MS 19-4-12
if (lambdaS[1]<=1e-07) lambda <- 1e-07 # MS 19-4-12
if (lambdaS[2]>=1e+07) lambda2 <- 1e+07 # MS 19-4-12
if (lambdaS[2]<=1e-07) lambda2 <- 1e-07 # MS 19-4-12
# case 1: if lambda is known just fit -----------------------------------------
if (is.null(df)&&!is.null(lambda)||!is.null(df)&&!is.null(lambda))
{
fit <- regpen(y, X, w)
fv <- X %*% fit$beta
} # case 2: if lambda is estimated --------------------------------------------
else if (is.null(df)&&is.null(lambda))
{ #
# cat("----------------------------","\n")
lambda <- lambdaS[1]
lambda2 <- lambdaS[2]
# if ML --------------------------------------------------------------------ML
switch(control$method,
"ML"={
# cat("----", "\n")
for (it in 1:50)
{
fit <- regpen(y, X, w) # fit model
fv <- X %*% fit$beta # fitted values
#cat(fit$do1order, "\n")
if (fit$do1order)
{
gamma. <- D %*% as.vector(fit$beta) # get the gamma differences
gamma2. <- D1 %*% as.vector(fit$beta)
sig2 <- sum(w * (y - fv) ^ 2) / (N - fit$edf) # DS+FDB 3-2-14
tau2 <- sum(gamma. ^ 2) / (fit$df1-1)
tau2_2 <- sum(gamma2. ^ 2) / (fit$df2-1)
if(tau2<1e-7) tau2 <- 1.0e-7 # lower limit
if(tau2_2<1e-7) tau2_2 <- 1.0e-7
lambda.old <- lambda
lambda <- sig2 / tau2
if (lambda<1.0e-7) lambda<-1.0e-7 #
if (lambda>1.0e+7) lambda<-1.0e+7 # DS 29 3 2012
lambda2.old <- lambda2
lambda2 <- sig2 / tau2_2
if (lambda2<1.0e-7) lambda2<-1.0e-7 #
if (lambda2>1.0e+7) lambda2<-1.0e+7 #
if (abs(lambda-lambda.old) < 1.0e-7||lambda>1.0e10) break
# cat("lambda",lambda,lambda2, fit$edf, '\n')
} else
{ # the standard pb()
gamma. <- D %*% as.vector(fit$beta) # get the gamma differences
fv <- X %*% fit$beta # fitted values
sig2 <- sum(w * (y - fv) ^ 2) / (N - fit$edf) # DS+FDB 3-2-14
tau2 <- sum(gamma. ^ 2) / (fit$edf-order)# see LNP page 279
if(tau2<1e-7) tau2 <- 1.0e-7 # MS 19-4-12
lambda.old <- lambda
lambda <- sig2 / tau2
if (lambda<1.0e-7) lambda<-1.0e-7 #
if (lambda>1.0e+7) lambda<-1.0e+7 # DS 29 3 2012
if (abs(lambda-lambda.old) < 1.0e-7||lambda>1.0e10) break }
}
assign(startLambdaName, c(lambda, lambda2), envir=gamlss.env)
},
"GAIC"= #--------------------------------------------------------------- GAIC
{
lambda <- nlminb(lambda, fnGAIC, lower = 1.0e-7, upper = 1.0e7, k=control$k)$par
fit <- regpen(y=y, X=X, w=w, lambda=lambda)
fv <- X %*% fit$beta
assign(startLambdaName, lambda, envir=gamlss.env)
},
"GCV"={ #-------------------------------------------------------------- GCV
#
wy <- sqrt(w)*y
y.y <- sum(wy^2)
Rinv <- solve(R)
S <- t(D)%*%D
UDU <- eigen(t(Rinv)%*%S%*%Rinv)
yy <- t(UDU$vectors)%*%Qy #t(qr.Q(QR))%*%wy
lambda <- nlminb(lambda, fnGCV, lower = 1.0e-7, upper = 1.0e7, k=control$k)$par
fit <- regpen(y=y, X=X, w=w, lambda=lambda)
fv <- X %*% fit$beta
assign(startLambdaName, lambda, envir=gamlss.env)
})
}
else # case 3 : if df are required--------------------------------------------
{
Rinv <- solve(R)
S <- t(D)%*%D
UDU <- eigen(t(Rinv)%*%S%*%Rinv)
lambda <- if (sign(edf1_df(0))==sign(edf1_df(100000))) 100000 # in case they have the some sign
else uniroot(edf1_df, c(0,100000))$root
# if (any(class(lambda)%in%"try-error")) {lambda<-100000}
fit <- regpen(y, X, w, lambda)
fv <- X %*% fit$beta
}#end of case 3 --------------------------------------------------------------
#Version 4 --------------------------------------------------
waug <- as.vector(c(w, rep(1,nrow(D))))
xaug <- as.matrix(rbind(X,sqrt(lambda)*D))
lev <- hat(sqrt(waug)*xaug,intercept=FALSE)[1:n] # get the hat matrix
# MIKIS: conclusion is that version 4 the R hat is the faster
#-end -----------------------------------------------------------
lev <- (lev-.hat.WX(w,x)) # subtract the linear since is already fitted
var <- lev/w # the variance of the smoother
suppressWarnings(Fun <- splinefun(xvar, fv, method="natural"))
coefSmo <- list( coef = fit$beta,
fv = fv,
lambda = lambda,
edf = fit$edf,
sigb2 = tau2,
sige2 = sig2,
sigb = if (is.null(tau2)) NA else sqrt(tau2),
sige = if (is.null(sig2)) NA else sqrt(sig2),
method = control$method,
fun = Fun)
class(coefSmo) <- c("pbz", "pb")
# if (is.null(xeval)) # if no prediction
# {
list(fitted.values=fv, residuals=y-fv, var=var, nl.df =fit$edf-1,
lambda=lambda, coefSmo=coefSmo )
}
else # for prediction
{
# ll <- dim(as.matrix(attr(x,"X")))[1]
# nx <- as.matrix(attr(x,"X"))[seq(length(y)+1,ll),]
# pred <- drop(nx %*% fit$beta)
position=0
rexpr<-regexpr("predict.gamlss",sys.calls())
for (i in 1:length(rexpr))
{
position <- i
if (rexpr[i]==1) break
}
#cat("New way of prediction in pbz() (starting from GAMLSS version 5.0-3)", "\n")
gamlss.environment <- sys.frame(position)
param <- get("what", envir=gamlss.environment)
object <- get("object", envir=gamlss.environment)
TT <- get("TT", envir=gamlss.environment)
intercept <- get("coef", envir=gamlss.environment)[1]
smooth.labels <- get("smooth.labels", envir=gamlss.environment)
ll <- dim(as.matrix(attr(x,"X")))[1]
newxval <- as.vector(attr(x,"x"))[seq(length(y)+1,ll)]
pred <- getSmo(object, parameter= param, which=which(smooth.labels==TT))$fun(newxval)
# pred <- getSmo(object, parameter= param, which=which(TT%in%smooth.labels))$fun(newxval)
# pred <- getSmo(object, parameter= param, which=which(TT%in%smooth.labels))$fun(xeval)
pred
}
}
#-------------------------------------------------------------------------------
print.pbz <- function (x, digits = max(3, getOption("digits") - 3), ...)
{
cat("P-spline fit using the gamlss function pbz() \n")
cat("Degrees of Freedom for the fit :", x$edf, "\n")
cat("Random effect parameter sigma_b:", format(signif(x$sigb)), "\n")
cat("Smoothing parameter lambda :", format(signif(x$lambda)), "\n")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.