Nothing
####**********************************************************************
####**********************************************************************
####
#### ----------------------------------------------------------------
#### Written by:
#### John Ehrlinger, Ph.D.
####
#### email: john.ehrlinger@gmail.com
#### URL: https://github.com/ehrlinger/ggRandomForests
#### ----------------------------------------------------------------
####
####**********************************************************************
####**********************************************************************
#' Variable Importance (VIMP) data object
#'
#' \code{gg_vimp} Extracts the variable importance (VIMP) information from a
#' a \code{\link[randomForestSRC]{rfsrc}} object.
#'
#' @param object A \code{\link[randomForestSRC]{rfsrc}} object or output from
#' \code{\link[randomForestSRC]{vimp}}
#' @param nvar argument to control the number of variables included in the
#' output.
#' @param ... arguments passed to the \code{\link[randomForestSRC]{vimp.rfsrc}}
#' function if the \code{\link[randomForestSRC]{rfsrc}} object does not contain
#' importance information.
#'
#' @return \code{gg_vimp} object. A \code{data.frame} of VIMP measures, in rank
#' order.
#'
#' @seealso \code{\link{plot.gg_vimp}} \code{\link[randomForestSRC]{rfsrc}}
#' @seealso \code{\link[randomForestSRC]{vimp}}
#'
#' @references
#' Ishwaran H. (2007). Variable importance in binary regression trees and
#' forests, \emph{Electronic J. Statist.}, 1:519-537.
#'
#' @importFrom tidyr gather
#' @importFrom randomForestSRC vimp
#'
#' @examples
#' ## ------------------------------------------------------------
#' ## classification example
#' ## ------------------------------------------------------------
#' ## -------- iris data
#' rfsrc_iris <- rfsrc(Species ~ ., data = iris,
#' importance = TRUE)
#' gg_dta <- gg_vimp(rfsrc_iris)
#' plot(gg_dta)
#'
#' ## ------------------------------------------------------------
#' ## regression example
#' ## ------------------------------------------------------------
#' \dontrun{
#' ## -------- air quality data
#' rfsrc_airq <- rfsrc(Ozone ~ ., airquality,
#' importance = TRUE)
#' gg_dta <- gg_vimp(rfsrc_airq)
#' plot(gg_dta)
#' }
#'
#' ## -------- Boston data
#' data(Boston, package="MASS")
#' rfsrc_boston <- randomForestSRC::rfsrc(medv~., Boston,
#' importance = TRUE)
#' gg_dta <- gg_vimp(rfsrc_boston)
#' plot(gg_dta)
#'
#' ## -------- Boston data
#' rf_boston <- randomForest::randomForest(medv~., Boston)
#' gg_dta <- gg_vimp(rf_boston)
#' plot(gg_dta)
#'
#' \dontrun{
#' ## -------- mtcars data
#' rfsrc_mtcars <- rfsrc(mpg ~ ., data = mtcars,
#' importance = TRUE)
#' gg_dta <- gg_vimp(rfsrc_mtcars)
#' plot(gg_dta)
#' }
#' ## ------------------------------------------------------------
#' ## survival example
#' ## ------------------------------------------------------------
#' \dontrun{
#' ## -------- veteran data
#' data(veteran, package = "randomForestSRC")
#' rfsrc_veteran <- rfsrc(Surv(time, status) ~ .,
#' data = veteran,
#' ntree = 100,
#' importance = TRUE)
#'
#' gg_dta <- gg_vimp(rfsrc_veteran)
#' plot(gg_dta)
#'
#' ## -------- pbc data
#' # We need to create this dataset
#' data(pbc, package = "randomForestSRC",)
#' # For whatever reason, the age variable is in days...
#' # makes no sense to me
#' for (ind in seq_len(dim(pbc)[2])) {
#' if (!is.factor(pbc[, ind])) {
#' if (length(unique(pbc[which(!is.na(pbc[, ind])), ind])) <= 2) {
#' if (sum(range(pbc[, ind], na.rm = TRUE) == c(0, 1)) == 2) {
#' pbc[, ind] <- as.logical(pbc[, ind])
#' }
#' }
#' } else {
#' if (length(unique(pbc[which(!is.na(pbc[, ind])), ind])) <= 2) {
#' if (sum(sort(unique(pbc[, ind])) == c(0, 1)) == 2) {
#' pbc[, ind] <- as.logical(pbc[, ind])
#' }
#' if (sum(sort(unique(pbc[, ind])) == c(FALSE, TRUE)) == 2) {
#' pbc[, ind] <- as.logical(pbc[, ind])
#' }
#' }
#' }
#' if (!is.logical(pbc[, ind]) &
#' length(unique(pbc[which(!is.na(pbc[, ind])), ind])) <= 5) {
#' pbc[, ind] <- factor(pbc[, ind])
#' }
#' }
#' #Convert age to years
#' pbc$age <- pbc$age / 364.24
#'
#' pbc$years <- pbc$days / 364.24
#' pbc <- pbc[, -which(colnames(pbc) == "days")]
#' pbc$treatment <- as.numeric(pbc$treatment)
#' pbc$treatment[which(pbc$treatment == 1)] <- "DPCA"
#' pbc$treatment[which(pbc$treatment == 2)] <- "placebo"
#' pbc$treatment <- factor(pbc$treatment)
#' dta_train <- pbc[-which(is.na(pbc$treatment)), ]
#' # Create a test set from the remaining patients
#' pbc_test <- pbc[which(is.na(pbc$treatment)), ]
#'
#' #========
#' # build the forest:
#' rfsrc_pbc <- randomForestSRC::rfsrc(
#' Surv(years, status) ~ .,
#' dta_train,
#' nsplit = 10,
#' na.action = "na.impute",
#' forest = TRUE,
#' importance = TRUE,
#' save.memory = TRUE
#' )
#'
#' gg_dta <- gg_vimp(rfsrc_pbc)
#' plot(gg_dta)
#'
#' # Restrict to only the top 10.
#' gg_dta <- gg_vimp(rfsrc_pbc, nvar=10)
#' plot(gg_dta)
#' }
#' @aliases gg_vimp gg_vimp.rfsrc gg_vimp.randomForest
#' @aliases gg_vimp.randomForest.formula
#' @export
gg_vimp <- function(object, nvar, ...) {
UseMethod("gg_vimp", object)
}
#' @export
gg_vimp.rfsrc <- function(object, nvar, ...) {
# Get the extra arguments for handling specifics
if (sum(inherits(object, c("rfsrc", "grow"), TRUE) == c(1, 2)) != 2 &&
sum(inherits(object, c("rfsrc", "predict"), TRUE) == c(1, 2)) != 2) {
stop("This function only works for objects of class `(rfsrc, grow)' or
'(rfsrc, predict)'.")
}
### set importance to NA if it is NULL
if (is.null(object$importance)) {
warning("rfsrc object does not contain VIMP information. Calculating...")
gg_dta <-
data.frame(sort(randomForestSRC::vimp(object)$importance,
decreasing = TRUE))
} else {
gg_dta <- data.frame(object$importance)
}
if (ncol(gg_dta) == 1) {
colnames(gg_dta) <- "VIMP"
gg_dta$vars <- rownames(gg_dta)
gg_dta <- gg_dta[order(gg_dta$VIMP, decreasing = TRUE), ]
}
if (missing(nvar))
nvar <- nrow(gg_dta)
if (nvar > nrow(gg_dta))
nvar <- nrow(gg_dta)
# Handle multiclass importance
if (ncol(gg_dta) > 1) {
# Classification...
arg_set <- list(...)
if (!is.null(arg_set$which.outcome)) {
# test which.outcome specification
if (!is.numeric(arg_set$which.outcome)) {
if (arg_set$which.outcome %in% colnames(gg_dta)) {
gg_v <- data.frame(vimp = sort(gg_dta[, arg_set$which.outcome],
decreasing = TRUE))
gg_v$vars <-
rownames(gg_dta)[order(gg_dta[, arg_set$which.outcome],
decreasing = TRUE)]
} else {
stop(
paste(
"which.outcome naming is incorrect.",
arg_set$which.outcome,
"\nis not in",
colnames(gg_dta)
)
)
}
} else {
if (arg_set$which.outcome < ncol(gg_dta)) {
gg_v <- data.frame(vimp = sort(gg_dta[, arg_set$which.outcome + 1],
decreasing = TRUE))
gg_v$vars <-
rownames(gg_dta)[order(gg_dta[, arg_set$which.outcome + 1],
decreasing = TRUE)]
} else {
stop(
paste(
"which.outcome specified larger than the number of classes (+1).",
arg_set$which.outcome,
" >= ",
ncol(gg_dta)
)
)
}
}
gg_dta <- gg_v
} else {
gg_dta$vars <- rownames(gg_dta)
}
gg_dta <- gg_dta[seq_len(nvar), ]
gathercols <-
colnames(gg_dta)[-which(colnames(gg_dta) == "vars")]
gg_dta <- tidyr::gather(gg_dta, "set", "vimp", gathercols)
gg_dta <- gg_dta[order(gg_dta$vimp, decreasing = TRUE), ]
gg_dta$vars <- factor(gg_dta$vars)
} else {
cnms <- colnames(gg_dta)
gg_dta <- cbind(gg_dta, gg_dta / gg_dta[1, 1])
colnames(gg_dta) <- c(cnms, "rel_vimp")
gg_dta$vars[which(is.na(gg_dta$vars))] <-
rownames(gg_dta)[which(is.na(gg_dta$vars))]
gg_dta <- gg_dta[1:nvar, ]
}
gg_dta$vars <-
factor(gg_dta$vars, levels = rev(unique(gg_dta$vars)))
gg_dta$positive <- TRUE
gg_dta$positive[which(gg_dta$vimp <= 0)] <- FALSE
class(gg_dta) <- c("gg_vimp", class(gg_dta))
invisible(gg_dta)
}
#' @export
gg_vimp.randomForest <- function(object, nvar, ...) {
## Check that the input obect is of the correct type.
if (!inherits(object, "randomForest")) {
stop(
paste(
"This function only works for Forests grown",
"with the randomForest package."
)
)
}
### set importance to NA if it is NULL
if (is.null(object$importance)) {
warning("randomForest object does not contain importance information.")
# gg_dta <- data.frame(sort(randomForestSRC::vimp(object)$importance,
# decreasing=TRUE))
} else {
gg_dta <- data.frame(object$importance)
}
if (ncol(gg_dta) < 3) {
gg_dta$vars <- rownames(gg_dta)
colnames(gg_dta)[which(colnames(gg_dta) == "X.IncMSE")] <-
"vimp"
if ("vimp" %in% colnames(gg_dta)) {
gg_dta <- gg_dta[order(gg_dta$vimp, decreasing = TRUE), ]
} else {
cn <- colnames(gg_dta)[1]
gg_dta <-
gg_dta[order(gg_dta[, cn], decreasing = TRUE), ]
}
}
if (missing(nvar))
nvar <- nrow(gg_dta)
if (nvar > nrow(gg_dta))
nvar <- nrow(gg_dta)
# Handle multiclass importance
if (ncol(gg_dta) > 1) {
# Classification...
arg_set <- list(...)
if (!is.null(arg_set$which.outcome)) {
# test which.outcome specification
if (!is.numeric(arg_set$which.outcome)) {
if (arg_set$which.outcome %in% colnames(gg_dta)) {
gg_v <- data.frame(vimp = sort(gg_dta[, arg_set$which.outcome],
decreasing = TRUE))
gg_v$vars <-
rownames(gg_dta)[order(gg_dta[, arg_set$which.outcome],
decreasing = TRUE)]
} else {
stop(
paste(
"which.outcome naming is incorrect.",
arg_set$which.outcome,
"\nis not in",
colnames(gg_dta)
)
)
}
} else {
if (arg_set$which.outcome < ncol(gg_dta)) {
gg_v <- data.frame(vimp = sort(gg_dta[, arg_set$which.outcome + 1],
decreasing = TRUE))
gg_v$vars <-
rownames(gg_dta)[order(gg_dta[, arg_set$which.outcome + 1],
decreasing = TRUE)]
} else {
stop(
paste(
"which.outcome specified larger than the number of classes (+1).",
arg_set$which.outcome,
" >= ",
ncol(gg_dta)
)
)
}
}
gg_dta <- gg_v
} else {
gg_dta$vars <- rownames(gg_dta)
}
gathercols <-
colnames(gg_dta)[-which(colnames(gg_dta) == "vars")]
gg_dta <- tidyr::gather(gg_dta, "set", "vimp", gathercols)
gg_dta <- gg_dta[order(gg_dta$vimp, decreasing = TRUE), ]
gg_dta$vars <- factor(gg_dta$vars)
} else {
gg_dta$vars[which(is.na(gg_dta$vars))] <-
rownames(gg_dta)[which(is.na(gg_dta$vars))]
}
gg_dta <- gg_dta[1:nvar, ]
gg_dta$vars <-
factor(gg_dta$vars, levels = rev(unique(gg_dta$vars)))
gg_dta$positive <- TRUE
gg_dta$positive[which(gg_dta$vimp <= 0)] <- FALSE
class(gg_dta) <- c("gg_vimp", class(gg_dta))
invisible(gg_dta)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.