Nothing
#' @include utilities.R compat-plyr.R
NULL
#' Construct aesthetic mappings
#'
#' Aesthetic mappings describe how variables in the data are mapped to visual
#' properties (aesthetics) of geoms. Aesthetic mappings can be set in
#' [ggplot()] and in individual layers.
#'
#' This function also standardises aesthetic names by converting `color` to `colour`
#' (also in substrings, e.g., `point_color` to `point_colour`) and translating old style
#' R names to ggplot names (e.g., `pch` to `shape` and `cex` to `size`).
#'
#' @section Quasiquotation:
#'
#' `aes()` is a [quoting function][rlang::quotation]. This means that
#' its inputs are quoted to be evaluated in the context of the
#' data. This makes it easy to work with variables from the data frame
#' because you can name those directly. The flip side is that you have
#' to use [quasiquotation][rlang::quasiquotation] to program with
#' `aes()`. See a tidy evaluation tutorial such as the [dplyr
#' programming vignette](https://dplyr.tidyverse.org/articles/programming.html)
#' to learn more about these techniques.
#'
#' @param x,y,... <[`data-masking`][rlang::topic-data-mask]> List of name-value
#' pairs in the form `aesthetic = variable` describing which variables in the
#' layer data should be mapped to which aesthetics used by the paired
#' geom/stat. The expression `variable` is evaluated within the layer data, so
#' there is no need to refer to the original dataset (i.e., use
#' `ggplot(df, aes(variable))` instead of `ggplot(df, aes(df$variable))`).
#' The names for x and y aesthetics are typically omitted because they are so
#' common; all other aesthetics must be named.
#' @seealso [vars()] for another quoting function designed for
#' faceting specifications.
#'
#' Run `vignette("ggplot2-specs")` to see an overview of other aesthetics
#' that can be modified.
#'
#' [Delayed evaluation][aes_eval] for working with computed variables.
#'
#' @family aesthetics documentation
#' @return A list with class `uneval`. Components of the list are either
#' quosures or constants.
#' @export
#' @examples
#' aes(x = mpg, y = wt)
#' aes(mpg, wt)
#'
#' # You can also map aesthetics to functions of variables
#' aes(x = mpg ^ 2, y = wt / cyl)
#'
#' # Or to constants
#' aes(x = 1, colour = "smooth")
#'
#' # Aesthetic names are automatically standardised
#' aes(col = x)
#' aes(fg = x)
#' aes(color = x)
#' aes(colour = x)
#'
#' # aes() is passed to either ggplot() or specific layer. Aesthetics supplied
#' # to ggplot() are used as defaults for every layer.
#' ggplot(mpg, aes(displ, hwy)) + geom_point()
#' ggplot(mpg) + geom_point(aes(displ, hwy))
#'
#' # Tidy evaluation ----------------------------------------------------
#' # aes() automatically quotes all its arguments, so you need to use tidy
#' # evaluation to create wrappers around ggplot2 pipelines. The
#' # simplest case occurs when your wrapper takes dots:
#' scatter_by <- function(data, ...) {
#' ggplot(data) + geom_point(aes(...))
#' }
#' scatter_by(mtcars, disp, drat)
#'
#' # If your wrapper has a more specific interface with named arguments,
#' # you need the "embrace operator":
#' scatter_by <- function(data, x, y) {
#' ggplot(data) + geom_point(aes({{ x }}, {{ y }}))
#' }
#' scatter_by(mtcars, disp, drat)
#'
#' # Note that users of your wrapper can use their own functions in the
#' # quoted expressions and all will resolve as it should!
#' cut3 <- function(x) cut_number(x, 3)
#' scatter_by(mtcars, cut3(disp), drat)
aes <- function(x, y, ...) {
xs <- arg_enquos("x")
ys <- arg_enquos("y")
dots <- enquos(...)
args <- c(xs, ys, dots)
args <- Filter(Negate(quo_is_missing), args)
# Pass arguments to helper dummy to throw an error when duplicate
# `x` and `y` arguments are passed through dots
local({
aes <- function(x, y, ...) NULL
inject(aes(!!!args))
})
aes <- new_aes(args, env = parent.frame())
rename_aes(aes)
}
# Wrap symbolic objects in quosures but pull out constants out of
# quosures for backward-compatibility
new_aesthetic <- function(x, env = globalenv()) {
if (is_quosure(x)) {
if (!quo_is_symbolic(x)) {
x <- quo_get_expr(x)
}
return(x)
}
if (is_symbolic(x)) {
x <- new_quosure(x, env = env)
return(x)
}
x
}
new_aes <- function(x, env = globalenv()) {
check_object(x, is.list, "a {.cls list}")
x <- lapply(x, new_aesthetic, env = env)
structure(x, class = "uneval")
}
#' @export
print.uneval <- function(x, ...) {
cat("Aesthetic mapping: \n")
if (length(x) == 0) {
cat("<empty>\n")
} else {
values <- vapply(x, quo_label, character(1))
bullets <- paste0("* ", format(paste0("`", names(x), "`")), " -> ", values, "\n")
cat(bullets, sep = "")
}
invisible(x)
}
#' @export
"[.uneval" <- function(x, i, ...) {
new_aes(NextMethod())
}
# If necessary coerce replacements to quosures for compatibility
#' @export
"[[<-.uneval" <- function(x, i, value) {
new_aes(NextMethod())
}
#' @export
"$<-.uneval" <- function(x, i, value) {
# Can't use NextMethod() because of a bug in R 3.1
x <- unclass(x)
x[[i]] <- value
new_aes(x)
}
#' @export
"[<-.uneval" <- function(x, i, value) {
new_aes(NextMethod())
}
#' Standardise aesthetic names
#'
#' This function standardises aesthetic names by converting `color` to `colour`
#' (also in substrings, e.g. `point_color` to `point_colour`) and translating old style
#' R names to ggplot names (eg. `pch` to `shape`, `cex` to `size`).
#' @param x Character vector of aesthetics names, such as `c("colour", "size", "shape")`.
#' @return Character vector of standardised names.
#' @keywords internal
#' @export
standardise_aes_names <- function(x) {
# convert US to UK spelling of colour
x <- sub("color", "colour", x, fixed = TRUE)
# convert old-style aesthetics names to ggplot version
revalue(x, ggplot_global$base_to_ggplot)
}
# x is a list of aesthetic mappings, as generated by aes()
rename_aes <- function(x) {
names(x) <- standardise_aes_names(names(x))
duplicated_names <- names(x)[duplicated(names(x))]
if (length(duplicated_names) > 0L) {
cli::cli_warn("Duplicated aesthetics after name standardisation: {.field {unique0(duplicated_names)}}")
}
x
}
substitute_aes <- function(x) {
x <- lapply(x, function(aesthetic) {
as_quosure(standardise_aes_symbols(quo_get_expr(aesthetic)), env = environment(aesthetic))
})
class(x) <- "uneval"
x
}
# x is a quoted expression from inside aes()
standardise_aes_symbols <- function(x) {
if (is.symbol(x)) {
name <- standardise_aes_names(as_string(x))
return(sym(name))
}
if (!is.call(x)) {
return(x)
}
# Don't walk through function heads
x[-1] <- lapply(x[-1], standardise_aes_symbols)
x
}
# Look up the scale that should be used for a given aesthetic
aes_to_scale <- function(var) {
var[var %in% ggplot_global$x_aes] <- "x"
var[var %in% ggplot_global$y_aes] <- "y"
var
}
# Figure out if an aesthetic is a position aesthetic or not
is_position_aes <- function(vars) {
aes_to_scale(vars) %in% c("x", "y")
}
#' Define aesthetic mappings programmatically
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' Aesthetic mappings describe how variables in the data are mapped to visual
#' properties (aesthetics) of geoms. [aes()] uses non-standard
#' evaluation to capture the variable names. `aes_()` and `aes_string()`
#' require you to explicitly quote the inputs either with `""` for
#' `aes_string()`, or with `quote` or `~` for `aes_()`.
#' (`aes_q()` is an alias to `aes_()`). This makes `aes_()` and
#' `aes_string()` easy to program with.
#'
#' `aes_string()` and `aes_()` are particularly useful when writing
#' functions that create plots because you can use strings or quoted
#' names/calls to define the aesthetic mappings, rather than having to use
#' [substitute()] to generate a call to `aes()`.
#'
#' I recommend using `aes_()`, because creating the equivalents of
#' `aes(colour = "my colour")` or \code{aes(x = `X$1`)}
#' with `aes_string()` is quite clunky.
#'
#'
#' @section Life cycle:
#'
#' All these functions are soft-deprecated. Please use tidy evaluation idioms
#' instead. Regarding `aes_string()`, you can replace it with `.data` pronoun.
#' For example, the following code can achieve the same mapping as
#' `aes_string(x_var, y_var)`.
#'
#' ``` r
#' x_var <- "foo"
#' y_var <- "bar"
#' aes(.data[[x_var]], .data[[y_var]])
#' ````
#'
#' For more details, please see `vignette("ggplot2-in-packages")`.
#'
#' @param x,y,... List of name value pairs. Elements must be either
#' quoted calls, strings, one-sided formulas or constants.
#' @seealso [aes()]
#'
#' @keywords internal
#'
#' @export
aes_ <- function(x, y, ...) {
deprecate_soft0(
"3.0.0",
"aes_()",
details = "Please use tidy evaluation idioms with `aes()`"
)
mapping <- list(...)
if (!missing(x)) mapping["x"] <- list(x)
if (!missing(y)) mapping["y"] <- list(y)
caller_env <- parent.frame()
as_quosure_aes <- function(x) {
if (is.formula(x) && length(x) == 2) {
as_quosure(x)
} else if (is.null(x) || is.call(x) || is.name(x) || is.atomic(x)) {
new_aesthetic(x, caller_env)
} else {
cli::cli_abort("Aesthetic must be a one-sided formula, call, name, or constant.")
}
}
mapping <- lapply(mapping, as_quosure_aes)
structure(rename_aes(mapping), class = "uneval")
}
#' @rdname aes_
#' @export
aes_string <- function(x, y, ...) {
deprecate_soft0(
"3.0.0",
"aes_string()",
details = c(
"Please use tidy evaluation idioms with `aes()`. ",
'See also `vignette("ggplot2-in-packages")` for more information.'
)
)
mapping <- list(...)
if (!missing(x)) mapping["x"] <- list(x)
if (!missing(y)) mapping["y"] <- list(y)
caller_env <- parent.frame()
mapping <- lapply(mapping, function(x) {
if (is.character(x)) {
x <- parse_expr(x)
}
new_aesthetic(x, env = caller_env)
})
structure(rename_aes(mapping), class = "uneval")
}
#' @export
#' @rdname aes_
aes_q <- aes_
#' Given a character vector, create a set of identity mappings
#'
#' @param vars vector of variable names
#' @keywords internal
#' @export
#' @examples
#' aes_all(names(mtcars))
#' aes_all(c("x", "y", "col", "pch"))
aes_all <- function(vars) {
names(vars) <- vars
vars <- rename_aes(vars)
# Quosure the symbols in the empty environment because they can only
# refer to the data mask
structure(
lapply(vars, function(x) new_quosure(as.name(x), emptyenv())),
class = "uneval"
)
}
#' Automatic aesthetic mapping
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' @param data data.frame or names of variables
#' @param ... aesthetics that need to be explicitly mapped.
#' @keywords internal
#' @export
aes_auto <- function(data = NULL, ...) {
deprecate_warn0("2.0.0", "aes_auto()")
# detect names of data
if (is.null(data)) {
cli::cli_abort("{.fn aes_auto} requires a {.cls data.frame} or names of data.frame.")
} else if (is.data.frame(data)) {
vars <- names(data)
} else {
vars <- data
}
# automatically detected aes
vars <- intersect(ggplot_global$all_aesthetics, vars)
names(vars) <- vars
aes <- lapply(vars, function(x) parse(text = x)[[1]])
# explicitly defined aes
if (length(match.call()) > 2) {
args <- as.list(match.call()[-1])
aes <- c(aes, args[names(args) != "data"])
}
structure(rename_aes(aes), class = "uneval")
}
mapped_aesthetics <- function(x) {
if (is.null(x)) {
return(NULL)
}
is_null <- vapply(x, is.null, logical(1))
names(x)[!is_null]
}
#' Check a mapping for discouraged usage
#'
#' Checks that `$` and `[[` are not used when the target *is* the data
#'
#' @param mapping A mapping created with [aes()]
#' @param data The data to be mapped from
#'
#' @noRd
warn_for_aes_extract_usage <- function(mapping, data) {
lapply(mapping, function(quosure) {
warn_for_aes_extract_usage_expr(get_expr(quosure), data, get_env(quosure))
})
}
warn_for_aes_extract_usage_expr <- function(x, data, env = emptyenv()) {
if (is_call(x, "[[") || is_call(x, "$")) {
if (extract_target_is_likely_data(x, data, env)) {
good_usage <- alternative_aes_extract_usage(x)
cli::cli_warn(c(
"Use of {.code {format(x)}} is discouraged.",
"i" = "Use {.code {good_usage}} instead."
))
}
} else if (is.call(x)) {
lapply(x, warn_for_aes_extract_usage_expr, data, env)
}
}
alternative_aes_extract_usage <- function(x) {
if (is_call(x, "[[")) {
good_call <- call2("[[", quote(.data), x[[3]])
format(good_call)
} else if (is_call(x, "$")) {
as.character(x[[3]])
} else {
cli::cli_abort("Don't know how to get alternative usage for {.var {x}}.")
}
}
extract_target_is_likely_data <- function(x, data, env) {
if (!is.name(x[[2]]) || identical(x[[2]], quote(.data))) {
return(FALSE)
}
tryCatch({
data_eval <- eval_tidy(x[[2]], data, env)
identical(unrowname(data_eval), unrowname(data))
}, error = function(err) FALSE)
}
# Takes a quosure and returns a named list of quosures, expanding
# `!!!` expressions as needed
arg_enquos <- function(name, frame = caller_env()) {
# First start with `enquo0()` which does not process injection
# operators
quo <- inject(enquo0(!!sym(name)), frame)
expr <- quo_get_expr(quo)
if (!is_missing(expr) && is_triple_bang(expr)) {
# Evaluate `!!!` operand and create a list of quosures
env <- quo_get_env(quo)
xs <- eval_bare(expr[[2]][[2]][[2]], env)
xs <- lapply(xs, as_quosure, env = env)
} else {
# Redefuse `x` to process injection operators, then store in a
# length-1 list of quosures
quo <- inject(enquo(!!sym(name)), frame)
xs <- set_names(list(quo), name)
}
new_quosures(xs)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.