Nothing
#' @title Create simplest simulation, cj = mu 1 data used for contrast
#' analysis
#'
#' @param nsamp number of samples of each type
#'
#' @param ncond number of conditions
#'
#' @param err_sd the standard deviation of the errors
#'
#' @details There is no true deviation exists in this case
#'
#' @examples
#' sim_contrast1(100,5)
#'
#' @export
#'
sim_contrast1 = function(nsamp = 100, ncond = 5, err_sd=sqrt(0.5)){
# generate scalar
Cs = rnorm(nsamp, 10)
C = matrix(rep(Cs,ncond), nrow=nsamp, ncol=ncond)
Shat = matrix(err_sd, nrow=nrow(C), ncol=ncol(C))
E = matrix(rnorm(length(Shat), mean=0, sd=Shat), nrow=nrow(C),ncol=ncol(C))
Chat = C+E
row_ids = paste0("sample_", 1:nrow(C))
col_ids = paste0("condition_", 1:ncol(C))
rownames(C) = row_ids
colnames(C) = col_ids
rownames(Chat) = row_ids
colnames(Chat) = col_ids
rownames(Shat) = row_ids
colnames(Shat) = col_ids
return(list(C=C,Chat=Chat,Shat=Shat))
}
#' @title Create simulation with signal data used for contrast
#' analysis.
#'
#' @param nsamp Number of samples of each type.
#'
#' @param ncond Number of conditions.
#'
#' @param err_sd The standard deviation of the errors.
#'
#' @details The first condition is the reference group. The deviations
#' are the difference between the subsequent conditions with the
#' reference group. The simulation consists of 90% null deviations,
#' 10% non-nulls. The non-nulls consist of equal numbers of three
#' different types of deviations: equal among conditions, present only
#' in the first subsequent condition, independent across conditions.
#'
#' @examples
#' sim_contrast2(100,5)
#'
#' @export
#'
sim_contrast2 = function(nsamp = 1000, ncond = 5, err_sd=sqrt(0.5)){
# generate scalar
Cs = rnorm(nsamp, mean=10, sd=1)
C = matrix(rep(Cs,ncond), nrow=nsamp, ncol=ncond)
# generate 4 cases delta
# 90% null
nsamp.alt = ceiling(0.1*nsamp)
D.zero = matrix(0, nrow=nsamp-nsamp.alt, ncol=ncond-1)
# 10% alt
nsamp.id = floor(nsamp.alt/3)
nsamp.all = floor(nsamp.alt/3)
nsamp.one = nsamp.alt - nsamp.id - nsamp.all
D.id = matrix(rnorm(nsamp.id*(ncond-1), sd=1),nrow=nsamp.id, ncol=ncond-1) #independent deviations
d = rnorm(nsamp.all, sd=1)
D.all = matrix(rep(d,ncond-1), nrow=nsamp.all, ncol=ncond-1) # identical deviations
D.one = matrix(0, nrow=nsamp.one, ncol=ncond-1) # deviation that occur only in condition 1
d2 = rnorm(nsamp.one, sd=1)
D.one[,1] = d2
D = rbind(D.zero, D.id, D.all, D.one)
C = C + cbind(D, rep(0,nsamp))
Shat = matrix(err_sd, nrow=nrow(C), ncol=ncol(C))
E = matrix(rnorm(length(Shat), mean=0, sd=Shat), nrow=nrow(C),ncol=ncol(C))
Chat = C+E
row_ids = paste0("sample_", 1:nrow(C))
col_ids = paste0("condition_", 1:ncol(C))
rownames(C) = row_ids
colnames(C) = col_ids
rownames(Chat) = row_ids
colnames(Chat) = col_ids
rownames(Shat) = row_ids
colnames(Shat) = col_ids
return(list(C=C,Chat=Chat,Shat=Shat))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.