Nothing
# Function to calculate Z50 knowing Z95 and the cumulated root proportion V at a given depth Z
.root_ldrZ50 <- function(V,Z,Z95){
if(sum(V >= 0.9497887)>0) {stop("The function is not defined for V >= 0.9497887")}
if(sum(Z == Z95)>0) {stop("The function is not defined for Z = Z95")}
a <- log(V/(1-V))/2.94
Z50 <- (Z/Z95^a)^(1/(1-a))
return(Z50)
}
# Convenience function for finding the inverse solution of a given function
.inverse <- function (f, lower, upper) {
function (y) uniroot((function (x) f(x) - y), lower = lower, upper = upper, extendInt = "yes")[1]
}
#' @rdname utils_ldrOptimization
#'
#' @param x An object of class \code{\link{spwbInput}}.
#' @param meteo A data frame with daily meteorological data series (see \code{\link{spwb}}).
#' @param cohorts A character string with the names of cohorts to be explored. If \code{NULL} then all cohorts are explored.
#' @param RZmin The minimum value of RZ (the rooting depth) to be explored (in mm)
#' @param RZmax The maximum value of RZ (the rooting depth) to be explored (in mm)
#' @param V1min The minimum value of V1 (the root proportion in the first soil layer) to be explored
#' @param V1max The maximum value of V1 (the root proportion in the first soil layer) to be explored
#' @param resolution An integer defining the number of values to obtain by discretization of the root parameters RZ and V1. The number of parameter combinations and therefore the computation cost increases increase with the square of resolution
#' @param transformation Function to modify the size of Z intervals to be explored (by default, bins are equal).
#' @param heat_stop An integer defining the number of days during to discard from the calculation of the optimal root distribution. Usefull if the soil water content initialization is not certain
#' @param ... Additional parameters to function \code{\link[medfate]{spwb}}.
#'
#' @export
utils_ldrExploration<-function(x, meteo, cohorts = NULL,
RZmin = 301, RZmax = 4000, V1min = 0.01, V1max = 0.94, resolution = 10,
heat_stop = 0, transformation = "identity", verbose = FALSE,
...) {
# define the days to keep in the analysis
op_days <- (heat_stop+1):nrow(meteo)
# Define the values of Z50 and Z90 to be explored
trans <- function(x) do.call(transformation, list(x))
inverse_trans <- .inverse(trans, lower = 0.01, upper = 100) # inverse of the function used for the transformation
if(RZmax > sum(x$soil$widths)){
if(verbose) cat("\n RZmax is larger than soil depth\n")
}
RZ_trans <- seq(trans(RZmin), trans(RZmax), length.out = resolution)
RZ <- as.numeric(unlist(sapply(RZ_trans, FUN = inverse_trans)))
# the case where RZ = Z1 will create problems when using the LDR model -> remove if it exists
Z1 <- x$soil$widths[1]
if(sum(RZ == Z1) > 0){
if(verbose) cat("\nThe function to derive the root proportion in each soil layer is not defined for RZ = Z1 (depth of the first soil layer)\n",
"This value is removed\n",
paste("Resolution is now\n", resolution-1))
RZ <- RZ[-which(RZ == Z1)]
}
if(V1max >= 0.9497887){
if(verbose) cat("\nThe function to derive the root proportion in each soil layer is only defined for V1 c ]0,0.949[\nV1max is set to 0.94\n")
V1max <- 0.94
}
if(V1min <= 0){
if(verbose) cat("\nThe function to derive the root proportion in each soil layer is only defined for V1 c ]0,0.949[\nV1min is set to 0.01\n")
V1min <- 0.001
}
V1 <- seq(V1min,V1max,length.out = length(RZ)) # the proportion of root in the first soil layer
# Create a matrix with V1 as rows and RZ as column, filled with logical values to indicate the parameter combinations to explore
mExplore <- matrix(T, nrow = length(V1), ncol = length(RZ), dimnames = list(V1 = V1, RZ = RZ))
# mExplore[lower.tri(mExplore, diag = T)] <- F
# Calculate Z50
Z50 <- .root_ldrZ50(V = array(V1,dim = dim(mExplore)), Z = array(Z1, dim = dim(mExplore)), Z95 = t(array(RZ, dim = dim(mExplore))))
dimnames(Z50) <- dimnames(mExplore)
# Prepare array for V
V <- array(dim = c(length(x$soil$widths),length(V1), length(RZ)),
dimnames = list(layer = 1:length(x$soil$widths), V1 = V1, RZ = RZ))
# Sum LAI of all species
x$above$LAI_live <- sum(x$above$LAI_live)
x$above$LAI_expanded <- sum(x$above$LAI_expanded)
x$above$LAI_dead <- sum(x$above$LAI_dead)
# Data outputs
if(is.null(cohorts)) cohorts = row.names(x$cohorts)
An<-E <- PsiMin <- array(dim = c(length(cohorts), length(V1), length(RZ)), dimnames = list(cohort = cohorts, V1 = V1, RZ = RZ))
# Start loop
cc <- which(mExplore == T, arr.ind = T)
# Reset input
resetInputs(x)
for(ci in 1:length(cohorts)){
coh = cohorts[ci]
sp = which(row.names(x$cohorts)==coh)
if(verbose) cat(paste("Exploring root distribution of cohort", coh,"(", x$cohorts$Name[sp],"):\n"))
x_1sp <- x
x_1sp$cohorts <- x$cohorts[sp,,drop = FALSE]
x_1sp$above <- x$above[sp,,drop = FALSE]
x_1sp$below <- x$below
x_1sp$belowLayers$V <- x$belowLayers$V[sp,,drop = FALSE]
x_1sp$paramsInterception <- x$paramsInterception[sp,,drop = FALSE]
x_1sp$paramsTransp <- x$paramsTransp[sp,,drop = FALSE]
x_1sp$Transpiration <- x$Transpiration[sp,drop = FALSE]
x_1sp$Photosynthesis <- x$Photosynthesis[sp,drop = FALSE]
if(x_1sp$control$transpirationMode=="Granier") {
x_1sp$PLC <- x$PLC[sp,drop = FALSE]
} else {
x_1sp$belowLayers$VGrhizo_kmax <- x$belowLayers$V[sp,,drop = FALSE]
x_1sp$belowLayers$VCroot_kmax <- x$belowLayers$V[sp,,drop = FALSE]
x_1sp$paramsAnatomy <- x$paramsAnatomy[sp,,drop = FALSE]
x_1sp$paramsWaterStorage <- x$paramsWaterStorage[sp,,drop = FALSE]
x_1sp$StemPLC <- x$StemPLC[sp,drop = FALSE]
x_1sp$Einst <- x$Einst[sp,drop = FALSE]
x_1sp$RhizoPsi <- x$RhizoPsi[sp,,drop = FALSE]
x_1sp$RootCrownPsi <- x$RootCrownPsi[sp,drop = FALSE]
x_1sp$StemSympPsi <- x$StemSympPsi[sp,drop = FALSE]
x_1sp$StemPsi1 <- x$StemPsi1[sp,drop = FALSE]
x_1sp$StemPsi2 <- x$StemPsi2[sp,drop = FALSE]
x_1sp$LeafSympPsi <- x$LeafSympPsi[sp,drop = FALSE]
x_1sp$LeafPsi <- x$LeafPsi[sp,drop = FALSE]
}
x_1sp$control$verbose <- F
for(row in 1:nrow(cc)){
i <- cc[row,1]
j <- cc[row,2]
# Update the depth of the different soil layer to match RZ
s. <- x$soil
s.$SoilDepth <- RZ[j]
dCum <- cumsum(s.$widths)
layersWithinRZ <- dCum < RZ[j]
layersWithinRZ <- c(T,layersWithinRZ[-length(layersWithinRZ)])
s.$widths <- s.$widths[layersWithinRZ] # remove the layers not included
nl <- length(s.$widths) #new number of layers
s.$widths[nl] <- s.$widths[nl]-dCum[nl]+RZ[j] # adjust the width of the last layer
# s.$Water_FC[nl] = soil$Water_FC[nl]*(s.$widths[nl]/soil$widths[nl]) #Adjust volume of the last layer
# Adjust the other soil parameters to the new number of layers
s.[["sand"]] <- s.[["sand"]][1:nl]
s.[["clay"]] <- s.[["clay"]][1:nl]
s.[["om"]] <- s.[["om"]][1:nl]
s.[["rfc"]] <- s.[["rfc"]][1:nl]
s.[["macro"]] <- s.[["macro"]][1:nl]
s.[["W"]] <- s.[["W"]][1:nl]
s.[["Temp"]] <- s.[["Temp"]][1:nl]
s.[["VG_alpha"]] <- s.[["VG_alpha"]][1:nl]
s.[["VG_theta_res"]] <- s.[["VG_theta_res"]][1:nl]
s.[["VG_theta_sat"]] <- s.[["VG_theta_sat"]][1:nl]
s.[["Ksat"]] <- s.[["Ksat"]][1:nl]
V[,i,j] <- 0
x_1sp$belowLayers$V = x$belowLayers$V[sp,1:nl,drop = FALSE]
x_1sp$belowLayers$V[1,] <- root_ldrDistribution(Z50 = Z50[i,j], Z95 = RZ[j], Z100 = sum(s.$widths), d=s.$widths)
V[1:length(x_1sp$belowLayers$V),i,j] <- x_1sp$belowLayers$V
x_1sp[["soil"]] <- s.
s_res <- spwb(x = x_1sp, meteo = meteo, ...)
# Outputs
years <- substr(as.Date(meteo$dates), start = 1, stop = 4)
ma <- function(x,n=10){
f = stats::filter(x,rep(1/n,n), method = "convolution", sides = 2)
f = f[!is.na(f)]
# print(sum(is.na(f)))
f
}
if(x_1sp$control$transpirationMode=="Granier") {
psi <- s_res$Plants$PlantPsi[op_days]
} else {
psi <- s_res$Plants$StemPsi[op_days]
}
PsiMin[ci,i,j] <- mean(aggregate(psi,
by = list(years[op_days]),
FUN = function(x) {
m <- ma(x)
if(sum(!is.na(m)>0)) return(min(m, na.rm=TRUE))
return(NA)
})$x)
# if(verbose) print(s_res$spwbInput)
E[ci,i,j] <- mean(s_res$Plants$Transpiration[op_days], na.rm=TRUE)
if(x_1sp$control$transpirationMode=="Granier") {
An[ci,i,j] <- mean(s_res$Plants$GrossPhotosynthesis[op_days], na.rm=TRUE)
} else {
An[ci,i,j] <- mean(s_res$Plants$NetPhotosynthesis[op_days], na.rm=TRUE)
}
}
cat("\n")
}
res <-list(cohorts = cohorts, RZ = RZ, V1 = V1, Z50 = Z50, E = E, An = An, PsiMin = PsiMin)
class(res)<-list("utils_ldrExploration","list")
return(res)
}
#' Optimization of root distribution
#'
#' Functions \code{utils_ldrExploration} and \code{utils_ldrOptimization} are used to
#' find optimum the species root distribution within \code{spwb}, given the arguments
#' \code{x}, \code{meteo} and \code{psi_crit}.
#'
#' @param y The result of calling \code{utils_ldrExploration}.
#' @param psi_crit A numerical vector of length iqual to the number of species in the plot containing the species values of water potential inducing hydraulic failure (in MPa). Use \code{NA} values to skip optimization for particular plant cohorts.
#' @param opt_mode Optimization mode:
#' \itemize{
#' \item{\code{opt_mode = 1} maximizes transpiration along the line of stress equal to \code{psi_crit} (Cabon et al. 2018). The optimization is based on the eco-hydrological equilibrium hypothesis (Eagleson, 1982), which is formulated here as the root distribution for which plant transpiration is maximized while the plant water potential is close to the species-defined critical value \code{psi_crit} (Cabon et al.,2018).}
#' \item{\code{opt_mode = 2} maximizes transpiration among combinations with stress according to \code{psi_crit}).}
#' \item{\code{opt_mode = 3} maximizes photosynthesis among combinations with stress according to \code{psi_crit}).}
#' \item{\code{opt_mode = 4} maximizes transpiration, subject to root construction constrains, among combinations with stress according to \code{psi_crit}).}
#' \item{\code{opt_mode = 5} maximizes photosynthesis, subject to root construction constrains, among combinations with stress according to \code{psi_crit}).}
#' }
#' @param verbose A logical value. Print the internal messages of the function?
#'
#' @details
#' For each combination of the parameters RZ and V1 the function \code{utils_ldrExploration} runs \code{spwb},
#' setting the total soil depth equal to RZ. The root proportion in each soil layer is derived from V1,
#' the depth of the first soil layer and RZ using the LDR root distribution model (Schenk and Jackson, 2002)
#' and assuming that the depth containing 95 percent of the roots is equal to RZ.
#' Function \code{utils_ldrOptimization} takes the result of the exploration and tries
#' to find optimum root distribution parameters. \code{psi_crit}, the species specific
#' water potential inducing hydraulic failure, can be approached by the water potential
#' inducing 50 percent of loss of conductance for the and gymnosperms and 88 percent for
#' the angiosperms (Urli et al., 2013, Brodribb et al., 2010). Details of the hypothesis
#' and limitations of the optimization method are given in Cabon et al. (2019).
#'
#' @return
#' Function \code{utils_ldrExploration} returns a list containing a list containing
#' the explored RZ and V1 combinations as well as arrays with the values of average daily plant transpiration,
#' average daily net photosynthesis and the minimum plant water potential for each cohort and parameter combination.
#'
#' Function \code{utils_ldrOptimization} returns a data frame with containing
#' the species index used in medfate, \code{psi_crit} and the optimized values of V1
#' and the LDR parameters Z50 and Z95 (see \code{\link{root_ldrDistribution}})
#' and as many rows as the number of species.
#'
#' @references
#' Brodribb, T.J., Bowman, D.J.M.S., Nichols, S., Delzon, S., Burlett, R., 2010. Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit. New Phytol. 188, 533–542. doi:10.1111/j.1469-8137.2010.03393.x
#'
#' Cabon, A., \enc{Martínez-Vilalta}{Martinez-Vilalta}, J., Poyatos, R., \enc{Martínez de Aragón}{Martinez de Aragon}, J., De \enc{Cáceres}{Caceres}, M. (2018) Applying the eco-hydrological equilibrium hypothesis to estimate root ditribution in water-limited forests. Ecohydrology 11: e2015.
#'
#' Eagleson, P.S., 1982. Ecological optimality in water-limited natural soil-vegetation systems: 1. Theory and hypothesis. Water Resour. Res. 18, 325–340. doi:10.1029/WR018i002p00325
#'
#' Schenk, H.J., Jackson, R.B., 2002. The Global Biogeography of Roots. Ecol. Monogr. 72, 311. doi:10.2307/3100092
#'
#' Urli, M., Porte, A.J., Cochard, H., Guengant, Y., Burlett, R., Delzon, S., 2013. Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees. Tree Physiol. 33, 672–683. doi:10.1093/treephys/tpt030
#'
#' @author
#' Antoine Cabon, WSL
#'
#' Miquel De \enc{Cáceres}{Caceres} Ainsa, CREAF
#'
#' @seealso \code{\link{utils_rockOptimization}}, \code{\link{spwb}}, \code{\link{soil}}, \code{\link{root_ldrDistribution}}
#'
#' @name utils_ldrOptimization
#' @export
utils_ldrOptimization<-function(y, psi_crit, opt_mode = 1) {
E = y$E
An = y$An
PsiMin = y$PsiMin
V1 = y$V1
RZ = y$RZ
Z50 = y$Z50
cohorts = y$cohorts
if(length(psi_crit)!= length(cohorts)) stop("The length of 'psi_crit' must be equal to the number of cohorts in 'y'.")
optim <- data.frame(psi_crit = psi_crit, Z50 = NA, Z95 = NA, V1 = NA)
row.names(optim) = cohorts
for (i in 1:length(cohorts)){
psimin <- PsiMin[i,,]
e <- E[i,,]
an <- An[i,,]
if(opt_mode==1) {
# emax <- max(e)
# e[e >= emax-0.05*emax] <- emax - 0.05*emax
# cost <- (matrix(z, ncol = 1)%*%(1-v) + matrix(300, ncol = 1, nrow = length(z))%*%v)^(3/2)
supinf <- matrix(0, ncol = ncol(psimin), nrow = nrow(psimin))
supinf[psimin >= psi_crit[i]] <- 1
subselb <- rbind(supinf[-nrow(supinf),]-supinf[-1,], rep(0, ncol(supinf)))
subselt <- rbind(rep(0, ncol(supinf)), supinf[-1,]-supinf[-nrow(supinf),])
subsell <- cbind(rep(0, nrow(supinf)), supinf[,-1]-supinf[,-ncol(supinf)])
subselr <- cbind(supinf[,-ncol(supinf)]-supinf[,-1], rep(0, nrow(supinf)))
sel <- matrix(F, ncol = ncol(psimin), nrow = nrow(psimin))
sel[subselb == 1 | subselt == 1 | subsell == 1 | subselr == 1] <- T
if(length(e[sel])==0) {
warning(paste("Psi value", psi_crit[i],"for cohort ",row.names(cohorts)[i],"not reached for any combination."))
optim[i,] <- NA
} else {
point <- which(sel & e == max(e[sel]), arr.ind = T)
optim$Z50[i] <- Z50[point[1], point[2]]
optim$V1[i] <- V1[point[1]]
optim$Z95[i] <- RZ[point[2]]
}
}
else if(opt_mode==2) {
selPsi = (psimin > psi_crit[i]) # Select combinations with less stress than psi_crit
if(sum(selPsi)==0) selPsi = (psimin == max(psimin)) # If none, select combination of minimum stress
maxE = max(e[selPsi]) # Find maximum transpiration (among combinations selected)
sel2 = selPsi & (e == maxE) # Select combination with maximum transpiration
point = which(sel2, arr.ind = TRUE)
optim$Z50[i] <- Z50[point[1], point[2]]
optim$V1[i] <- V1[point[1]]
optim$Z95[i] <- RZ[point[2]]
}
else if(opt_mode==3) {
selPsi = (psimin > psi_crit[i]) # Select combinations with less stress than psi_crit
if(sum(selPsi)==0) selPsi = (psimin == max(psimin)) # If none, select combination of minimum stress
maxAn = max(an[selPsi]) # Find maximum transpiration (among combinations selected)
sel2 = selPsi & (an == maxAn) # Select combinations with maximum photosynthesis
point = which(sel2, arr.ind = TRUE)
optim$Z50[i] <- Z50[point[1], point[2]]
optim$V1[i] <- V1[point[1]]
optim$Z95[i] <- RZ[point[2]]
}
else if(opt_mode==4) {
selPsi = (psimin > psi_crit[i]) # Select combinations with less stress than psi_crit
if(sum(selPsi)==0) selPsi = (psimin == max(psimin)) # If none, select combination of minimum stress
maxE = max(e[selPsi]) # Find maximum transpiration (among combinations selected)
sel2 = selPsi & (e >= maxE*0.95) # Select combinations with > 95% of maximum transpiration
points = as.data.frame(which(sel2, arr.ind = TRUE))
minZ = min(points$RZ, na.rm=T) # Minimum rooting depth
maxV1 = max(points$V1[points$RZ==minZ], na.rm=T) # Maximum V1
point = c(maxV1, minZ)
optim$Z50[i] <- Z50[point[1], point[2]]
optim$V1[i] <- V1[point[1]]
optim$Z95[i] <- RZ[point[2]]
}
else if(opt_mode==5) {
selPsi = (psimin > psi_crit[i]) # Select combinations with less stress than psi_crit
if(sum(selPsi)==0) selPsi = (psimin == max(psimin)) # If none, select combination of minimum stress
maxAn = max(an[selPsi]) # Find maximum transpiration (among combinations selected)
sel2 = selPsi & (an >= maxAn*0.95) # Select combinations with > 95% of maximum photosynthesis
points = as.data.frame(which(sel2, arr.ind = TRUE))
minZ = min(points$RZ, na.rm=T) # Minimum rooting depth
maxV1 = max(points$V1[points$RZ==minZ], na.rm=T) # Maximum V1
point = c(maxV1, minZ)
optim$Z50[i] <- Z50[point[1], point[2]]
optim$V1[i] <- V1[point[1]]
optim$Z95[i] <- RZ[point[2]]
}
}
return(optim)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.