blup.meta | R Documentation |
meta
objectCalculate best linear unbiased predictors (BLUPs) for meta-analysis object created with R package meta.
## S3 method for class 'meta'
blup(x, level = x$level, backtransf = x$backtransf, ...)
## S3 method for class 'blup.meta'
print(
x,
backtransf = attr(x, "x")$backtransf,
digits = gs("digits"),
digits.se = gs("digits.se"),
digits.tau2 = gs("digits.tau2"),
digits.tau = gs("digits.tau"),
big.mark = gs("big.mark"),
se = FALSE,
print.tau2 = gs("print.tau2"),
print.tau = gs("print.tau"),
details = gs("details"),
...
)
## S3 method for class 'blup.meta'
estimates(
x,
se = FALSE,
backtransf = attr(x, "x")$backtransf,
digits = gs("digits"),
digits.se = gs("digits.se"),
digits.tau2 = gs("digits.tau2"),
digits.tau = gs("digits.tau"),
writexl = !missing(path),
path = "estimates_blup.xlsx",
overwrite = FALSE,
...
)
## S3 method for class 'estimates.blup.meta'
print(x, big.mark = gs("big.mark"), details = gs("details"), ...)
x |
An object of class |
level |
The level used to calculate prediction intervals for BLUPs. |
backtransf |
A logical indicating whether BLUPs should be
back transformed. If |
... |
Additional arguments (passed on to |
digits |
Minimal number of significant digits, see
|
digits.se |
Minimal number of significant digits for standard errors. |
digits.tau2 |
Minimal number of significant digits for
between-study variance |
digits.tau |
Minimal number of significant digits for
|
big.mark |
A character used as thousands separator. |
se |
A logical indicating whether standard errors should be printed / extracted. |
print.tau2 |
A logical specifying whether between-study
variance |
print.tau |
A logical specifying whether |
details |
A logical specifying whether details on statistical methods should be printed. |
writexl |
A logical indicating whether an Excel file should be created (R package writexl must be available). |
path |
A character string specifying the filename of the Excel file. |
overwrite |
A logical indicating whether an existing Excel file should be overwritten. |
Data frame with variables
studlab |
Study label |
blup |
estimated best linear unbiased predictor |
se.blup |
standard error (only if argument |
lower |
lower prediction limits |
upper |
upper prediction limits |
Guido Schwarzer guido.schwarzer@uniklinik-freiburg.de
data("dat.bcg", package = "metadat")
m1 <- metabin(tpos, tpos + tneg, cpos, cpos + cneg,
data = dat.bcg, studlab = paste(author, year), method = "Inverse")
summary(m1)
blup(m1)
## Not run:
estimates(blup(m1), path = "blup_m1.xlsx")
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.