cidprop: Calculate expected proportion of comparable studies with...

View source: R/cidprop.R

cidprop.metaR Documentation

Calculate expected proportion of comparable studies with clinically important benefit or harm

Description

Calculate expected proportion of comparable studies with clinically important benefit or harm which is derived from the prediction interval.

Usage

## S3 method for class 'meta'
cidprop(
  x,
  cid = NULL,
  cid.below.null = NULL,
  cid.above.null = NULL,
  label.cid = "",
  label.cid.below.null = NULL,
  label.cid.above.null = NULL,
  small.values = "desirable",
  ...
)

cidprop(x, ...)

## S3 method for class 'cidprop'
print(
  x,
  digits.cid = gs("digits.cid"),
  digits.percent = 1,
  big.mark = gs("big.mark"),
  details.methods = gs("details"),
  ...
)

Arguments

x

An object of class meta.

cid

A numeric value or vector specifying clinically important differences (CID) / decision thresholds used to calculate expected proportions of clinically important benefit or harm (see Details).

cid.below.null

A numeric value or vector specifying CID limits below the null effect (see Details).

cid.above.null

A numeric value or vector specifying CID limits above the null effect (see Details).

label.cid

A character string or vector specifying labels for clinically important differences. Must be of same length as argument cid.

label.cid.below.null

A character string or vector specifying labels for clinically important differences below the null effect. Must be of same length as argument cid.below.null (or cid).

label.cid.above.null

A character string or vector specifying labels for clinically important differences above the null effect. Must be of same length as argument cid.above.null (or cid).

small.values

A character string specifying whether small treatment effects indicate a beneficial ("desirable") or harmful ("undesirable"), can be abbreviated.

...

Additional arguments (ignored)

digits.cid

Minimal number of significant digits for CIDs / decision thresholds, see print.default.

digits.percent

Minimal number of significant digits for expected proportions, printed as percentages, see print.default.

big.mark

A character used as thousands separator.

details.methods

A logical specifying whether details on statistical methods should be printed.

Details

Expected proportions of comparable studies with clinically important benefit or harm are derived from the prediction interval in the meta-analysis.

Clinically important benefit or harm can be defined using either argument cid or cid.below.null and cid.above.null. Input for the later arguments will be ignored if argument cid was specified. In this case, the values of cid.below.null and cid.above.null will be equal to

  • cid and 1 / cid for ratio measures,

  • cid and -cid for difference measures.

Thresholds based on argument cid will always be symmetric. Asymmetric thresholds can be defined using arguments cid.below.null and cid.above.null.

Value

A list with elements

prop.cid.below.null

Expected proportion of comparable studies below lower CID(s)

prop.cid.above.null

Expected proportion of comparable studies above upper CID(s)

prop.within.cid

Expected proportion of comparable studies between lower and upper CID(s)

cid, cid.below.null, cid.above.null, small.values, x

As defined above

label.cid, label.cid.below.null, label.cid.above.null

As defined above

Author(s)

Guido Schwarzer guido.schwarzer@uniklinik-freiburg.de

See Also

plot.cidprop

Examples

oldset <- settings.meta(digits.cid = 0)

m <- metagen(1:10 - 3, 1:10, sm = "MD")
#
pp1 <- cidprop(m, cid = 2)
pp1
#
pp2 <- cidprop(m, cid.below = 0.5, cid.above = 2)
pp2
#
pp3 <- cidprop(m, cid.below = 0.5, cid.above = 2, small.values = "u")
pp3

pp4 <- cidprop(m, cid = 1:2, label.cid = c("moderate", "large"))
pp4
#
pp5 <- cidprop(m, cid.below = -1.5, cid.above = 1:2,
  label.cid.below = "large", label.cid.above = c("moderate", "large"))
pp5

settings.meta(oldset)


meta documentation built on June 8, 2025, 11:45 a.m.