View source: R/forest.metabind.R
forest.metabind | R Documentation |
Draws a forest plot in the active graphics window (using grid graphics system).
## S3 method for class 'metabind'
forest(
x,
leftcols,
leftlabs,
rightcols = c("effect", "ci"),
rightlabs,
common = x$common,
random = x$random,
overall = x$overall,
subgroup = FALSE,
hetstat = FALSE,
overall.hetstat = x$overall.hetstat,
prediction = x$prediction,
lab.NA = "",
col.square = gs("col.square"),
col.square.lines = col.square,
col.circle = gs("col.circle"),
col.circle.lines = col.circle,
col.diamond = gs("col.diamond"),
col.diamond.common = col.diamond,
col.diamond.random = col.diamond,
col.diamond.lines = gs("col.diamond.lines"),
col.diamond.lines.common = col.diamond.lines,
col.diamond.lines.random = col.diamond.lines,
col.predict = gs("col.predict"),
col.predict.lines = gs("col.predict.lines"),
type = NULL,
type.common = NULL,
type.random = NULL,
type.predict = NULL,
digits = gs("digits.forest"),
digits.se = gs("digits.se"),
digits.stat = gs("digits.stat"),
digits.pval = max(gs("digits.pval") - 2, 2),
digits.pval.Q = max(gs("digits.pval.Q") - 2, 2),
digits.Q = gs("digits.Q"),
digits.tau2 = gs("digits.tau2"),
digits.tau = gs("digits.tau"),
digits.I2 = max(gs("digits.I2") - 1, 0),
scientific.pval = gs("scientific.pval"),
big.mark = gs("big.mark"),
print.subgroup.labels = x$with.subgroups,
addrow.subgroups = print.subgroup.labels,
smlab,
calcwidth.pooled = overall,
warn.deprecated = gs("warn.deprecated"),
...
)
x |
An object of class |
leftcols |
A character vector specifying (additional) columns to be plotted on the left side of the forest plot or a logical value (see Details). |
leftlabs |
A character vector specifying labels for (additional) columns on left side of the forest plot (see Details). |
rightcols |
A character vector specifying (additional) columns to be plotted on the right side of the forest plot or a logical value (see Details). |
rightlabs |
A character vector specifying labels for (additional) columns on right side of the forest plot (see Details). |
common |
A logical indicating whether common effect estimates should be plotted. |
random |
A logical indicating whether random effects estimates should be plotted. |
overall |
A logical indicating whether overall summaries should be plotted. This argument is useful in a meta-analysis with subgroups if summaries should only be plotted on group level. |
subgroup |
A logical indicating whether subgroup results should be shown in forest plot. This argument is useful in a meta-analysis with subgroups if summaries should not be plotted on group level. |
hetstat |
Either a logical value indicating whether to print results for heterogeneity measures at all or a character string (see Details). |
overall.hetstat |
A logical value indicating whether to print heterogeneity measures for overall treatment comparisons. This argument is useful in a meta-analysis with subgroups if heterogeneity statistics should only be printed on subgroup level. |
prediction |
A logical indicating whether prediction interval(s) should be printed. |
lab.NA |
A character string to label missing values. |
col.square |
The colour for squares reflecting study's weight in the meta-analysis. |
col.square.lines |
The colour for the outer lines of squares reflecting study's weight in the meta-analysis. |
col.circle |
The colour for circles reflecting study weights in the meta-analysis. |
col.circle.lines |
The colour for the outer lines of circles reflecting study's weight in the meta-analysis. |
col.diamond |
The colour of diamonds representing the results for common effect and random effects models. |
col.diamond.common |
The colour of diamonds for common effect estimates. |
col.diamond.random |
The colour of diamonds for random effects estimates. |
col.diamond.lines |
The colour of the outer lines of diamonds representing the results for common effect and random effects models. |
col.diamond.lines.common |
The colour of the outer lines of diamond for common effect estimates. |
col.diamond.lines.random |
The colour of the outer lines of diamond for random effects estimates. |
col.predict |
Background colour of prediction intervals. |
col.predict.lines |
Colour of outer lines of prediction intervals. |
type |
A character string or vector specifying how to plot estimates. |
type.common |
A single character string specifying how to plot common effect estimates. |
type.random |
A single character string specifying how to plot random effects estimates. |
type.predict |
A single character string specifying how to plot prediction intervals. |
digits |
Minimal number of significant digits for treatment
effects, see |
digits.se |
Minimal number of significant digits for standard
errors, see |
digits.stat |
Minimal number of significant digits for z- or
t-statistic for test of overall effect, see |
digits.pval |
Minimal number of significant digits for p-value
of overall treatment effect, see |
digits.pval.Q |
Minimal number of significant digits for
p-value of heterogeneity test, see |
digits.Q |
Minimal number of significant digits for
heterogeneity statistic Q, see |
digits.tau2 |
Minimal number of significant digits for
between-study variance, see |
digits.tau |
Minimal number of significant digits for square
root of between-study variance, see |
digits.I2 |
Minimal number of significant digits for I-squared
statistic, see |
scientific.pval |
A logical specifying whether p-values should be printed in scientific notation, e.g., 1.2345e-01 instead of 0.12345. |
big.mark |
A character used as thousands separator. |
print.subgroup.labels |
A logical indicating whether subgroup label should be printed. |
addrow.subgroups |
A logical value indicating whether an empty row is printed between results for subgroups. |
smlab |
A label for the summary measurex (printed at top of figure). |
calcwidth.pooled |
A logical indicating whether text for common effect and random effects model should be considered to calculate width of the column with study labels. |
warn.deprecated |
A logical indicating whether warnings should be printed if deprecated arguments are used. |
... |
Additional graphical arguments (passed on to
|
A forest plot, also called confidence interval plot, is drawn in
the active graphics window. The forest functions in R package
meta are based on the grid graphics system. In order to
print the forest plot, resize the graphics window and either use
dev.copy2eps
or dev.copy2pdf
. Another
possibility is to create a file using pdf
,
png
, or svg
and to specify the width
and height of the graphic (see forest.meta
examples).
The arguments leftcols
and rightcols
can be used to
specify columns which are plotted on the left and right side of the
forest plot, respectively.
The arguments leftlabs
and rightlabs
can be used to
specify column headings which are plotted on left and right side of
the forest plot, respectively. For certain columns predefined
labels exist. For other columns, the column name will be used as a
label. It is possible to only provide labels for new columns (see
forest.meta
examples). Otherwise the length of
leftlabs
and rightlabs
must be the same as the number
of printed columns, respectively. The value NA
can be used
to specify columns which should use default labels.
Argument hetstat
can be a character string to specify where
to print heterogeneity information:
row with results for common effect model (hetstat =
"common"
),
row with results for random effects model (hetstat =
"random"
),
rows with 'study' information (hetstat = "study"
).
Otherwise, information on heterogeneity is printed in dedicated rows.
Guido Schwarzer guido.schwarzer@uniklinik-freiburg.de
forest.meta
, metabin
,
metacont
, metagen
,
metabind
, settings.meta
data(Fleiss1993cont)
# Add some (fictitious) grouping variables:
#
Fleiss1993cont$age <- c(55, 65, 55, 65, 55)
Fleiss1993cont$region <- c("Europe", "Europe", "Asia", "Asia", "Europe")
m1 <- metacont(n.psyc, mean.psyc, sd.psyc, n.cont, mean.cont, sd.cont,
data = Fleiss1993cont, sm = "SMD")
# Conduct two subgroup analyses
#
mu1 <- update(m1, subgroup = age, bylab = "Age group")
mu2 <- update(m1, subgroup = region, bylab = "Region")
# Combine subgroup meta-analyses and show forest plot with subgroup
# results
#
mb1 <- metabind(mu1, mu2)
mb1
forest(mb1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.