Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
##dev="png",
dpi=50,
fig.width=7.15, fig.height=5.5,
out.width="600px",
fig.retina=1,
comment = "#>"
)
## -----------------------------------------------------------------------------
library(mets)
options(warn=-1)
set.seed(10) # to control output in simulations
## -----------------------------------------------------------------------------
nsim <- 200
chaz <- c(0,1,1.5,2,2.1)
breaks <- c(0,10, 20, 30, 40)
cumhaz <- cbind(breaks,chaz)
X <- rbinom(nsim,1,0.5)
beta <- 0.2
rrcox <- exp(X * beta)
pctime <- rchaz(cumhaz,n=nsim)
pctimecox <- rchaz(cumhaz,rrcox)
## -----------------------------------------------------------------------------
library(mets)
n <- 100
data(bmt)
bmt$bmi <- rnorm(408)
dcut(bmt) <- gage~age
data <- bmt
cox1 <- phreg(Surv(time,cause==1)~tcell+platelet+age,data=bmt)
dd <- sim.phreg(cox1,n,data=bmt)
dtable(dd,~status)
scox1 <- phreg(Surv(time,status==1)~tcell+platelet+age,data=dd)
cbind(coef(cox1),coef(scox1))
par(mfrow=c(1,1))
plot(scox1,col=2); plot(cox1,add=TRUE,col=1)
## changing the parametes
cox10 <- cox1
cox10$coef <- c(0,0.4,0.3)
dd <- sim.phreg(cox10,n,data=bmt)
dtable(dd,~status)
scox1 <- phreg(Surv(time,status==1)~tcell+platelet+age,data=dd)
cbind(coef(cox10),coef(scox1))
par(mfrow=c(1,1))
plot(scox1,col=2); plot(cox10,add=TRUE,col=1)
## -----------------------------------------------------------------------------
data(bmt);
cox1 <- phreg(Surv(time,cause==1)~tcell+platelet,data=bmt)
cox2 <- phreg(Surv(time,cause==2)~tcell+platelet,data=bmt)
X1 <- bmt[,c("tcell","platelet")]
n <- nsim
xid <- sample(1:nrow(X1),n,replace=TRUE)
Z1 <- X1[xid,]
Z2 <- X1[xid,]
rr1 <- exp(as.matrix(Z1) %*% cox1$coef)
rr2 <- exp(as.matrix(Z2) %*% cox2$coef)
d <- rcrisk(cox1$cum,cox2$cum,rr1,rr2)
dd <- cbind(d,Z1)
scox1 <- phreg(Surv(time,status==1)~tcell+platelet,data=dd)
scox2 <- phreg(Surv(time,status==2)~tcell+platelet,data=dd)
par(mfrow=c(1,2))
plot(cox1); plot(scox1,add=TRUE,col=2)
plot(cox2); plot(scox2,add=TRUE,col=2)
cbind(cox1$coef,scox1$coef,cox2$coef,scox2$coef)
## -----------------------------------------------------------------------------
data(sTRACE)
dtable(sTRACE,~chf+diabetes)
coxs <- phreg(Surv(time,status==9)~strata(diabetes,chf),data=sTRACE)
strata <- sample(0:3,nsim,replace=TRUE)
simb <- sim.base(coxs$cumhaz,nsim,stratajump=coxs$strata.jumps,strata=strata)
cc <- phreg(Surv(time,status)~strata(strata),data=simb)
plot(coxs,col=1); plot(cc,add=TRUE,col=2)
## -----------------------------------------------------------------------------
## stratified with phreg
cox0 <- phreg(Surv(time,cause==0)~tcell+platelet,data=bmt)
cox1 <- phreg(Surv(time,cause==1)~tcell+platelet,data=bmt)
cox2 <- phreg(Surv(time,cause==2)~strata(tcell)+platelet,data=bmt)
coxs <- list(cox0,cox1,cox2)
### dd <- sim.cause.cox(coxs,nsim,data=bmt)
dd <- sim.phregs(coxs,n,data=bmt)
## checking that cause specific hazards are as given, make n larger
scox0 <- phreg(Surv(time,status==1)~tcell+platelet,data=dd)
scox1 <- phreg(Surv(time,status==2)~tcell+platelet,data=dd)
scox2 <- phreg(Surv(time,status==3)~strata(tcell)+platelet,data=dd)
cbind(cox0$coef,scox0$coef)
cbind(cox1$coef,scox1$coef)
cbind(cox2$coef,scox2$coef)
par(mfrow=c(1,3))
plot(cox0); plot(scox0,add=TRUE,col=2);
plot(cox1); plot(scox1,add=TRUE,col=2);
plot(cox2); plot(scox2,add=TRUE,col=2);
########################################
## second example
########################################
cox1 <- phreg(Surv(time,cause==1)~strata(tcell)+platelet,data=bmt)
cox2 <- phreg(Surv(time,cause==2)~tcell+strata(platelet),data=bmt)
coxs <- list(cox1,cox2)
### dd <- sim.cause.cox(coxs,nsim,data=bmt)
dd <- sim.phregs(coxs,n,data=bmt)
scox1 <- phreg(Surv(time,status==1)~strata(tcell)+platelet,data=dd)
scox2 <- phreg(Surv(time,status==2)~tcell+strata(platelet),data=dd)
cbind(cox1$coef,scox1$coef)
cbind(cox2$coef,scox2$coef)
par(mfrow=c(1,2))
plot(cox1); plot(scox1,add=TRUE);
plot(cox2); plot(scox2,add=TRUE);
## -----------------------------------------------------------------------------
library(mets)
n <- 100
data(bmt)
bmt$bmi <- rnorm(408)
dcut(bmt) <- gage~age
data <- bmt
cox1 <- phreg(Surv(time,cause==1)~strata(tcell,platelet),data=bmt)
cox2 <- phreg(Surv(time,cause==2)~strata(gage,tcell),data=bmt)
cox3 <- phreg(Surv(time,cause==0)~strata(platelet)+bmi,data=bmt)
coxs <- list(cox1,cox2,cox3)
dd <- sim.phregs(coxs,n,data=bmt,extend=0.002)
dtable(dd,~status)
scox1 <- phreg(Surv(time,status==1)~strata(tcell,platelet),data=dd)
scox2 <- phreg(Surv(time,status==2)~strata(gage,tcell),data=dd)
scox3 <- phreg(Surv(time,status==3)~strata(platelet)+bmi,data=dd)
cbind(coef(cox1),coef(scox1), coef(cox2),coef(scox2), coef(cox3),coef(scox3))
par(mfrow=c(1,3))
plot(scox1,col=2); plot(cox1,add=TRUE,col=1)
plot(scox2,col=2); plot(cox2,add=TRUE,col=1)
plot(scox3,col=2); plot(cox3,add=TRUE,col=1)
## -----------------------------------------------------------------------------
data(CPH_HPN_CRBSI)
dr <- CPH_HPN_CRBSI$terminal
base1 <- CPH_HPN_CRBSI$crbsi
base4 <- CPH_HPN_CRBSI$mechanical
dr2 <- scalecumhaz(dr,1.5)
cens <- rbind(c(0,0),c(2000,0.5),c(5110,3))
iddata <- simMultistate(nsim,base1,base1,dr,dr2,cens=cens)
dlist(iddata,.~id|id<3,n=0)
### estimating rates from simulated data
c0 <- phreg(Surv(start,stop,status==0)~+1,iddata)
c3 <- phreg(Surv(start,stop,status==3)~+strata(from),iddata)
c1 <- phreg(Surv(start,stop,status==1)~+1,subset(iddata,from==2))
c2 <- phreg(Surv(start,stop,status==2)~+1,subset(iddata,from==1))
###
par(mfrow=c(2,2))
plot(c0)
lines(cens,col=2)
plot(c3,main="rates 1-> 3 , 2->3")
lines(dr,col=1,lwd=2)
lines(dr2,col=2,lwd=2)
###
plot(c1,main="rate 1->2")
lines(base1,lwd=2)
###
plot(c2,main="rate 2->1")
lines(base1,lwd=2)
## -----------------------------------------------------------------------------
library(mets)
nsim <- 100
rho1 <- 0.4; rho2 <- 2
beta <- c(0.3,-0.3,-0.3,0.3)
dats <- simul.cifs(nsim,rho1,rho2,beta,rc=0.5,depcens=0,type="logistic")
# Fitting regression model with CIF logistic-link
cif1 <- cifreg(Event(time,status)~Z1+Z2,dats)
summary(cif1)
dats <- simul.cifs(n,rho1,rho2,beta,rc=0.5,depcens=0,type="cloglog")
ciff <- cifregFG(Event(time,status)~Z1+Z2,dats)
summary(ciff)
## -----------------------------------------------------------------------------
data(bmt)
################################################################
# simulating several causes with specific cumulatives
################################################################
cif1 <- cifreg(Event(time,cause)~tcell+age,data=bmt,cause=1)
cif2 <- cifreg(Event(time,cause)~tcell+age,data=bmt,cause=2)
## dd <- sim.cifs(list(cif1,cif2),nsim,data=bmt)
dds <- sim.cifsRestrict(list(cif1,cif2),nsim,data=bmt)
scif1 <- cifreg(Event(time,cause)~tcell+age,data=dds,cause=1)
scif2 <- cifreg(Event(time,cause)~tcell+age,data=dds,cause=2)
cbind(cif1$coef,scif1$coef)
cbind(cif2$coef,scif2$coef)
par(mfrow=c(1,2))
plot(cif1); plot(scif1,add=TRUE,col=2)
plot(cif2); plot(scif2,add=TRUE,col=2)
## -----------------------------------------------------------------------------
data(CPH_HPN_CRBSI)
dr <- CPH_HPN_CRBSI$terminal
base1 <- CPH_HPN_CRBSI$crbsi
base4 <- CPH_HPN_CRBSI$mechanical
n <- 100
rr <- simRecurrent(n,base1,death.cumhaz=dr)
###
par(mfrow=c(1,3))
showfitsim(causes=1,rr,dr,base1,base1,which=1:2)
rr <- simRecurrentII(n,base1,base4,death.cumhaz=dr)
dtable(rr,~death+status)
showfitsim(causes=2,rr,dr,base1,base4,which=1:2)
cumhaz <- list(base1,base1,base4)
drl <- list(dr,base4)
rr <- simRecurrentList(n,cumhaz,death.cumhaz=drl)
dtable(rr,~death+status)
showfitsimList(rr,cumhaz,drl)
## -----------------------------------------------------------------------------
data(hfactioncpx12)
hf <- hfactioncpx12
hf$x <- as.numeric(hf$treatment)
n <- 100
## to fit non-parametric models with just a baseline
xr <- phreg(Surv(entry,time,status==1)~cluster(id),data=hf)
dr <- phreg(Surv(entry,time,status==2)~cluster(id),data=hf)
simcoxcox <- sim.recurrent(xr,dr,n=n,data=hf)
recGL <- recreg(Event(entry,time,status)~+cluster(id),hf,death.code=2)
simglcox <- sim.recurrent(recGL,dr,n=n,data=hf)
## -----------------------------------------------------------------------------
cox <- survival::coxph(Surv(time,status==9)~vf+chf+wmi,data=sTRACE)
sim1 <- sim.cox(cox,nsim,data=sTRACE)
cc <- survival::coxph(Surv(time,status)~vf+chf+wmi,data=sim1)
cbind(cox$coef,cc$coef)
cor(sim1[,c("vf","chf","wmi")])
cor(sTRACE[,c("vf","chf","wmi")])
cox <- phreg(Surv(time, status==9)~vf+chf+wmi,data=sTRACE)
sim3 <- sim.cox(cox,nsim,data=sTRACE)
cc <- phreg(Surv(time, status)~vf+chf+wmi,data=sim3)
cbind(cox$coef,cc$coef)
plot(cox,se=TRUE); plot(cc,add=TRUE,col=2)
coxs <- phreg(Surv(time,status==9)~strata(chf,vf)+wmi,data=sTRACE)
sim3 <- sim.phreg(coxs,nsim,data=sTRACE)
cc <- phreg(Surv(time, status)~strata(chf,vf)+wmi,data=sim3)
cbind(coxs$coef,cc$coef)
plot(coxs,col=1); plot(cc,add=TRUE,col=2)
## -----------------------------------------------------------------------------
data(bmt)
# coxph
cox1 <- survival::coxph(Surv(time,cause==1)~tcell+platelet,data=bmt)
cox2 <- survival::coxph(Surv(time,cause==2)~tcell+platelet,data=bmt)
coxs <- list(cox1,cox2)
dd <- sim.cause.cox(coxs,nsim,data=bmt)
scox1 <- survival::coxph(Surv(time,status==1)~tcell+platelet,data=dd)
scox2 <- survival::coxph(Surv(time,status==2)~tcell+platelet,data=dd)
cbind(cox1$coef,scox1$coef)
cbind(cox2$coef,scox2$coef)
## -----------------------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.