R/itemfit.R

Defines functions itemfit

Documented in itemfit

#' Item fit statistics
#'
#' Computes item-fit statistics for a variety of unidimensional and multidimensional models.
#' Poorly fitting items should be inspected with the empirical plots/tables
#' for unidimensional models, otherwise \code{\link{itemGAM}} can be used to diagnose
#' where the functional form of the IRT model was misspecified, or models can be refit using
#' more flexible semi-parametric response models (e.g., \code{itemtype = 'spline'}).
#' If the latent trait density was approximated (e.g., Davidian curves, Empirical histograms, etc)
#' then passing \code{use_dentype_estimate = TRUE} will use the internally saved quadrature and
#' density components (where applicable). Currently, only S-X2 statistic supported for
#' mixture IRT models. Finally, where applicable the root mean-square error of approximation (RMSEA)
#' is reported to help gauge the magnitude of item misfit.
#'
#' @aliases itemfit
#' @param x a computed model object of class \code{SingleGroupClass},
#'   \code{MultipleGroupClass}, or \code{DiscreteClass}
#' @param fit_stats a character vector indicating which fit statistics should be computed.
#'   Supported inputs are:
#'
#' \itemize{
#'   \item \code{'S_X2'} : Orlando and Thissen (2000, 2003) and
#'     Kang and Chen's (2007) signed chi-squared test (default)
#'   \item \code{'Zh'} : Drasgow, Levine, & Williams (1985) Zh
#'   \item \code{'X2'} : Bock's (1972) chi-squared method.
#'     The default inputs compute Yen's (1981) Q1 variant of the X2 statistic
#'     (i.e., uses a fixed \code{group.bins = 10}). However, Bock's group-size variable
#'     median-based method can be computed by passing \code{group.fun = median} and
#'     modifying the \code{group.size} input to the desired number of bins
#'   \item \code{'G2'} : McKinley & Mills (1985) G2 statistic (similar method to Q1,
#'     but with the likelihood-ratio test).
#'   \item \code{'PV_Q1'} : Chalmers and Ng's (2017) plausible-value variant
#'     of the Q1 statistic.
#'   \item \code{'PV_Q1*'} : Chalmers and Ng's (2017) plausible-value variant
#'     of the Q1 statistic that uses parametric bootstrapping to obtain a suitable empirical
#'     distribution.
#'   \item \code{'X2*'} : Stone's (2000) fit statistics that require parametric
#'     bootstrapping
#'   \item \code{'X2*_df'} : Stone's (2000) fit statistics that require parametric
#'     bootstrapping to obtain scaled versions of the X2* and degrees of freedom
#'   \item \code{'infit'} : Compute the infit and outfit statistics
#' }
#'
#' Note that 'S_X2' and 'Zh' cannot be computed when there are missing response data
#' (i.e., will require multiple-imputation/row-removal techniques).
#'
#' @param which.items an integer vector indicating which items to test for fit.
#'   Default tests all possible items
#' @param p.adjust method to use for adjusting all p-values for each respective item fit
#'   statistic (see \code{\link{p.adjust}} for available options). Default is \code{'none'}
#' @param mincell the minimum expected cell size to be used in the S-X2 computations. Tables will be
#'   collapsed across items first if polytomous, and then across scores if necessary
#' @param mincell.X2 the minimum expected cell size to be used in the X2 computations. Tables will be
#'   collapsed if polytomous, however if this condition can not be met then the group block will
#'   be omitted in the computations
#' @param return.tables logical; return tables when investigating \code{'X2'}, \code{'S_X2'},
#'   and \code{'X2*'}?
#' @param group.size approximate size of each group to be used in calculating the \eqn{\chi^2}
#'   statistic. The default \code{NA}
#'   disables this command and instead uses the \code{group.bins} input to try and construct
#'   equally sized bins
#' @param group.bins the number of bins to use for X2 and G2. For example,
#'   setting \code{group.bins = 10} will will compute Yen's (1981) Q1 statistic when \code{'X2'} is
#'   requested
#' @param group.fun function used when \code{'X2'} or \code{'G2'} are computed. Determines the central
#'   tendency measure within each partitioned group. E.g., setting \code{group.fun = median} will
#'   obtain the median of each respective ability estimate in each subgroup (this is what was used
#'   by Bock, 1972)
#' @param empirical.plot a single numeric value or character of the item name indicating which
#'   item to plot (via \code{itemplot}) and overlay with the empirical \eqn{\theta} groupings (see
#'   \code{empirical.CI}). Useful for plotting the expected bins based on the \code{'X2'} or
#'   \code{'G2'} method
#' @param S_X2.plot argument input is the same as \code{empirical.plot}, however the resulting image
#'   is constructed according to the S-X2 statistic's conditional sum-score information
#' @param S_X2.plot_raw.score logical; use the raw-score information in the plot in stead of the latent
#'   trait scale score? Default is \code{FALSE}
#' @param empirical.CI a numeric value indicating the width of the empirical confidence interval
#'   ranging between 0 and 1 (default of 0 plots not interval). For example, a 95% confidence
#'   interval would be plotted when \code{empirical.CI = .95}. Only applicable to dichotomous items
#' @param empirical.poly.collapse logical; collapse polytomous item categories to for expected scoring
#'   functions for empirical plots? Default is \code{FALSE}
#' @param method type of factor score estimation method. See \code{\link{fscores}} for more detail
#' @param na.rm logical; remove rows with any missing values? This is required for methods such
#'   as S-X2 because they require the "EAPsum" method from \code{\link{fscores}}
#' @param Theta a matrix of factor scores for each person used for statistics that require
#'   empirical estimates. If supplied, arguments typically passed to \code{fscores()} will be
#'   ignored and these values will be used instead. Also required when estimating statistics
#'   with missing data via imputation
#' @param pv_draws number of plausible-value draws to obtain for PV_Q1 and PV_Q1*
#' @param boot number of parametric bootstrap samples to create for PV_Q1* and X2*
#' @param boot_dfapprox number of parametric bootstrap samples to create for the X2*_df statistic
#'   to approximate the scaling factor for X2* as well as the scaled degrees of freedom estimates
#' @param ETrange range of integration nodes for Stone's X2* statistic
#' @param ETpoints number of integration nodes to use for Stone's X2* statistic
# @param impute a number indicating how many imputations to perform (passed to
#   \code{\link{imputeMissing}}) when there are missing data present.
#   Will return a data.frame object with the mean estimates
#   of the stats and their imputed standard deviations
#' @param par.strip.text plotting argument passed to \code{\link[lattice]{lattice}}
#' @param par.settings plotting argument passed to \code{\link[lattice]{lattice}}
#' @param auto.key plotting argument passed to \code{\link[lattice]{lattice}}
#' @param ... additional arguments to be passed to \code{fscores()} and \code{\link[lattice]{lattice}}
#' @author Phil Chalmers \email{rphilip.chalmers@@gmail.com}
#' @keywords item fit
#' @export itemfit
#'
#' @seealso
#' \code{\link{personfit}}, \code{\link{itemGAM}}
#'
#' @references
#'
#' Bock, R. D. (1972). Estimating item parameters and latent ability when responses are scored
#' in two or more nominal categories. \emph{Psychometrika, 37}, 29-51.
#'
#' Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory
#' Package for the R Environment. \emph{Journal of Statistical Software, 48}(6), 1-29.
#' \doi{10.18637/jss.v048.i06}
#'
#' Chalmers, R. P. & Ng, V. (2017). Plausible-Value Imputation Statistics for Detecting
#' Item Misfit. \emph{Applied Psychological Measurement, 41}, 372-387.
#' \doi{10.1177/0146621617692079}
#'
#' Drasgow, F., Levine, M. V., & Williams, E. A. (1985). Appropriateness measurement with
#' polychotomous item response models and standardized indices.
#' \emph{British Journal of Mathematical and Statistical Psychology, 38}, 67-86.
#'
#' Kang, T. & Chen, Troy, T. (2007). An investigation of the performance of the generalized
#' S-X2 item-fit index for polytomous IRT models. ACT
#'
#' McKinley, R., & Mills, C. (1985). A comparison of several goodness-of-fit statistics.
#' Applied Psychological Measurement, 9, 49-57.
#'
#' Orlando, M. & Thissen, D. (2000). Likelihood-based item fit indices for dichotomous item
#' response theory models. \emph{Applied Psychological Measurement, 24}, 50-64.
#'
#' Reise, S. P. (1990). A comparison of item- and person-fit methods of assessing model-data fit
#' in IRT. \emph{Applied Psychological Measurement, 14}, 127-137.
#'
#' Stone, C. A. (2000). Monte Carlo Based Null Distribution for an Alternative Goodness-of-Fit
#' Test Statistics in IRT Models. \emph{Journal of Educational Measurement, 37}, 58-75.
#'
#' Wright B. D. & Masters, G. N. (1982). \emph{Rating scale analysis}. MESA Press.
#'
#' Yen, W. M. (1981). Using simulation results to choose a latent trait model.
#' \emph{Applied Psychological Measurement, 5}, 245-262.
#'
#' @examples
#'
#' \dontrun{
#'
#' P <- function(Theta){exp(Theta^2 * 1.2 - 1) / (1 + exp(Theta^2 * 1.2 - 1))}
#'
#' #make some data
#' set.seed(1234)
#' a <- matrix(rlnorm(20, meanlog=0, sdlog = .1),ncol=1)
#' d <- matrix(rnorm(20),ncol=1)
#' Theta <- matrix(rnorm(2000))
#' items <- rep('2PL', 20)
#' ps <- P(Theta)
#' baditem <- numeric(2000)
#' for(i in 1:2000)
#'    baditem[i] <- sample(c(0,1), 1, prob = c(1-ps[i], ps[i]))
#' data <- cbind(simdata(a,d, 2000, items, Theta=Theta), baditem=baditem)
#'
#' x <- mirt(data, 1)
#' raschfit <- mirt(data, 1, itemtype='Rasch')
#' fit <- itemfit(x)
#' fit
#'
#' # p-value adjustment
#' itemfit(x, p.adjust='fdr')
#'
#' # two different fit stats (with/without p-value adjustment)
#' itemfit(x, c('S_X2' ,'X2'), p.adjust='fdr')
#' itemfit(x, c('S_X2' ,'X2'))
#'
#' # Conditional sum-score plot from S-X2 information
#' itemfit(x, S_X2.plot = 1) # good fit
#' itemfit(x, S_X2.plot = 2) # good fit
#' itemfit(x, S_X2.plot = 21) # bad fit
#'
#' itemfit(x, 'X2') # just X2
#' itemfit(x, 'X2', method = 'ML') # X2 with maximum-likelihood estimates for traits
#' itemfit(x, group.bins=15, empirical.plot = 1, method = 'ML') #empirical item plot with 15 points
#' itemfit(x, group.bins=15, empirical.plot = 21, method = 'ML')
#'
#' # PV and X2* statistics (parametric bootstrap stats not run to save time)
#' itemfit(x, 'PV_Q1')
#'
#' if(interactive()) mirtCluster() # improve speed of bootstrap samples by running in parallel
#' # itemfit(x, 'PV_Q1*')
#' # itemfit(x, 'X2*') # Stone's 1993 statistic
#' # itemfit(x, 'X2*_df') # Stone's 2000 scaled statistic with df estimate
#'
#' # empirical tables for X2 statistic
#' tabs <- itemfit(x, 'X2', return.tables=TRUE, which.items = 1)
#' tabs
#'
#' #infit/outfit statistics. method='ML' agrees better with eRm package
#' itemfit(raschfit, 'infit', method = 'ML') #infit and outfit stats
#'
#' #same as above, but inputting ML estimates instead (saves time for re-use)
#' Theta <- fscores(raschfit, method = 'ML')
#' itemfit(raschfit, 'infit', Theta=Theta)
#' itemfit(raschfit, empirical.plot=1, Theta=Theta)
#' itemfit(raschfit, 'X2', return.tables=TRUE, Theta=Theta, which.items=1)
#'
#' # fit a new more flexible model for the mis-fitting item
#' itemtype <- c(rep('2PL', 20), 'spline')
#' x2 <- mirt(data, 1, itemtype=itemtype)
#' itemfit(x2)
#' itemplot(x2, 21)
#' anova(x, x2)
#'
#' #------------------------------------------------------------
#'
#' #similar example to Kang and Chen 2007
#' a <- matrix(c(.8,.4,.7, .8, .4, .7, 1, 1, 1, 1))
#' d <- matrix(rep(c(2.0,0.0,-1,-1.5),10), ncol=4, byrow=TRUE)
#' dat <- simdata(a,d,2000, itemtype = rep('graded', 10))
#' head(dat)
#'
#' mod <- mirt(dat, 1)
#' itemfit(mod)
#' itemfit(mod, 'X2') # less useful given inflated Type I error rates
#' itemfit(mod, empirical.plot = 1)
#' itemfit(mod, empirical.plot = 1, empirical.poly.collapse=TRUE)
#'
#' # collapsed tables (see mincell.X2) for X2 and G2
#' itemfit(mod, 'X2', return.tables = TRUE, which.items = 1)
#'
#' mod2 <- mirt(dat, 1, 'Rasch')
#' itemfit(mod2, 'infit', method = 'ML')
#'
#' # massive list of tables for S-X2
#' tables <- itemfit(mod, return.tables = TRUE)
#'
#' #observed and expected total score patterns for item 1 (post collapsing)
#' tables$O[[1]]
#' tables$E[[1]]
#'
#' # can also select specific items
#' # itemfit(mod, return.tables = TRUE, which.items=1)
#'
#' # fit stats with missing data (run in parallel using all cores)
#' dat[sample(1:prod(dim(dat)), 100)] <- NA
#' raschfit <- mirt(dat, 1, itemtype='Rasch')
#'
#' # use only valid data by removing rows with missing terms
#' itemfit(raschfit, c('S_X2', 'infit'), na.rm = TRUE)
#'
#' # note that X2, G2, PV-Q1, and X2* do not require complete datasets
#' thetas <- fscores(raschfit, method = 'ML') # save for faster computations
#' itemfit(raschfit, c('X2', 'G2'), Theta=thetas)
#' itemfit(raschfit, empirical.plot=1, Theta=thetas)
#' itemfit(raschfit, 'X2', return.tables=TRUE, which.items=1, Theta=thetas)
#'
#'}
#'
itemfit <- function(x, fit_stats = 'S_X2',
                    which.items = 1:extract.mirt(x, 'nitems'),
                    na.rm = FALSE, p.adjust = 'none',
                    group.bins = 10, group.size = NA, group.fun = mean,
                    mincell = 1, mincell.X2 = 2, return.tables = FALSE,
                    pv_draws = 30, boot = 1000, boot_dfapprox = 200,
                    S_X2.plot = NULL, S_X2.plot_raw.score = TRUE,
                    ETrange = c(-2,2), ETpoints = 11,
                    empirical.plot = NULL, empirical.CI = .95,
                    empirical.poly.collapse = FALSE, method = 'EAP', Theta = NULL, #impute = 0,
                    par.strip.text = list(cex = 0.7),
                    par.settings = list(strip.background = list(col = '#9ECAE1'),
                                        strip.border = list(col = "black")),
                    auto.key = list(space = 'right', points=FALSE, lines=TRUE), ...){

    impute <- 0
    # fn <- function(ind, Theta, obj, vals, ...){
    #     tmpobj <- obj
    #     tmpdat <- imputeMissing(obj, Theta[[ind]], warn=FALSE)
    #     tmpmod <- mirt(tmpdat, model=1, TOL=NA,
    #                    technical=list(customK=obj@Data$K, message=FALSE, warn=FALSE))
    #     tmpobj@Data <- tmpmod@Data
    #     whc <- 1L:length(Theta)
    #     return(itemfit(tmpobj, Theta=Theta[[sample(whc[-ind], 1L)]], ...))
    # }
    PV_itemfit <- function(mod, which.items = 1:extract.mirt(mod, 'nitems'),
                           draws = 100, p.adjust, ...){
        pv <- fscores(mod, plausible.draws = draws, ...)
        draws <- length(pv)
        df.X2 <- Q1 <- matrix(NA, length(which.items), draws)
        for (i in seq_len(draws)){
            tmp <- itemfit(mod, fit_stats='X2', which.items=which.items,
                           Theta = pv[[i]], ...)
            Q1[,i] <- tmp$X2
            df.X2[,i] <- tmp$df.X2
        }
        Q1_m <- rowMeans(Q1)
        df.X2_m <- rowMeans(df.X2)
        RMSEA.X2_m <- rmsea(Q1_m, df.X2_m, N=nrow(pv[[1L]]))
        p.Q1 <- pchisq(Q1_m, df.X2_m, lower.tail = FALSE)
        p.Q1 <- ifelse(df.X2_m == 0, NaN, p.Q1)
        ret <- data.frame(PV_Q1=Q1_m, df.PV_Q1=df.X2_m, RMSEA.PV_Q1=RMSEA.X2_m,
                          p.PV_Q1=p.adjust(p.Q1, method=p.adjust))
        ret
    }
    boot_PV <- function(mod, org, is_NA, which.items = 1:extract.mirt(mod, 'nitems'),
                        itemtype, boot = 1000, draws = 30, verbose = FALSE, p.adjust, ...){
        pb_fun <- function(ind, mod, N, sv, which.items, draws, itemtype, model, ...){
            count <- 0L
            K <- extract.mirt(mod, 'K')
            while(TRUE){
                count <- count + 1L
                if(count == 20)
                    stop('20 consecutive parametric bootstraps failed for PV_Q1*', call.=FALSE)
                dat <- simdata(model=mod, N=N)
                dat[is_NA] <- NA
                if(!all(apply(dat, 2, function(x) length(na.omit(unique(x)))) == K)) next
                mod2 <- mirt(dat, model, itemtype=itemtype,
                             verbose=FALSE, pars=sv, technical=list(warn=FALSE))
                if(!extract.mirt(mod2, 'converged')) next
                tmp <- PV_itemfit(mod2, which.items=which.items, draws=draws, ...)
                ret <- tmp$p.PV_Q1
                if(any(is.nan(ret) | is.na(ret))) next
                break
            }
            ret
        }
        N <- nrow(extract.mirt(mod, 'data'))
        retQ1 <- matrix(NA, boot, length(which.items))
        stopifnot(nrow(org) == length(which.items))
        model <- extract.mirt(mod, 'model')
        sv <- mod2values(mod)
        retQ1 <- mySapply(1L:boot, pb_fun, progress=verbose,
                          mod=mod, N=N, sv=sv, itemtype=itemtype,
                          which.items=which.items, draws=draws, model=model,
                          p.adjust=p.adjust, ...)
        if(nrow(retQ1) == 1L) retQ1 <- t(retQ1)
        Q1 <- (1 + rowSums(org$p.PV_Q1 > t(retQ1), na.rm = TRUE)) / (1 + boot)
        ret <- data.frame("p.PV_Q1_star"=p.adjust(Q1, method=p.adjust))
        ret
    }
    StoneFit <- function(mod, is_NA, which.items = 1:extract.mirt(mod, 'nitems'), itemtype,
                         dfapprox = FALSE, boot = 1000, ETrange = c(-2,2), ETpoints = 11,
                         verbose = FALSE, p.adjust, return.tables, ...){
        X2star <- function(mod, which.items, ETrange, ETpoints, itemtype, ...){
            sv <- mod2values(mod)
            sv$est <- FALSE
            nfact <- extract.mirt(mod, 'nfact')
            Theta <- thetaComb(seq(ETrange[1L], ETrange[2L], length.out=ETpoints),
                               nfact=nfact)
            dat <- extract.mirt(mod, 'data')
            Emod <- mirt(dat, nfact, itemtype=itemtype,
                         pars=sv, verbose=FALSE,
                         technical=list(storeEtable=TRUE, customTheta=Theta), ...)
            Etable <- Emod@Internals$Etable[[1]]$r1
            itemloc <- extract.mirt(mod, 'itemloc')
            X2 <- rep(NA, ncol(dat))
            if(return.tables)
                ret <- vector('list', length(which.items))
            for(i in seq_len(length(which.items))){
                pick <- itemloc[which.items[i]]:(itemloc[which.items[i]+1L] - 1L)
                O <- Etable[ ,pick]
                item <- extract.item(mod, which.items[i])
                E <- probtrace(item, Theta) * rowSums(O)
                X2[which.items[i]] <- sum((O - E)^2 / E, na.rm = TRUE)
                if(return.tables)
                    ret[[i]] <- list(O=O, E=E, Theta=Theta)
            }
            if(return.tables){
                names(ret) <- which.items
                return(ret)
            }
            X2[which.items]
        }
        pb_fun <- function(ind, is_NA, mod, N, model, itemtype, sv, which.items, ETrange,
                           ETpoints, ...){
            count <- 0L
            K <- extract.mirt(mod, 'K')
            while(TRUE){
                count <- count + 1L
                if(count == 20)
                    stop('20 consecutive parametric bootstraps failed for X2*', call.=FALSE)
                dat <- simdata(model=mod, N=N)
                dat[is_NA] <- NA
                if(!all(apply(dat, 2, function(x) length(na.omit(unique(x)))) == K)) next
                mod2 <- mirt(dat, model, itemtype=itemtype, verbose=FALSE, pars=sv,
                             technical=list(warn=FALSE, omp=FALSE), ...)
                if(!extract.mirt(mod2, 'converged')) next
                ret <- X2star(mod2, which.items=which.items, ETrange=ETrange,
                              ETpoints=ETpoints, itemtype=itemtype, ...)
                if(any(is.nan(ret) | is.na(ret))) next
                break
            }
            ret
        }

        N <- nrow(extract.mirt(mod, 'data'))
        X2bs <- matrix(NA, boot, length(which.items))
        org <- X2star(mod, which.items=which.items, itemtype=itemtype,
                      ETrange=ETrange, ETpoints=ETpoints,
                      return.tables=return.tables, ...)
        stopifnot(length(org) == length(which.items))
        if(return.tables) return(org)
        sv <- mod2values(mod)
        model <- extract.mirt(mod, 'model')
        X2bs <- mySapply(1L:boot, pb_fun, progress=verbose,
                         mod=mod, N=N, model=model, is_NA=is_NA,
                         itemtype=itemtype, sv=sv, which.items=which.items,
                         ETrange=ETrange, ETpoints=ETpoints, ...)
        if(nrow(X2bs) == 1L) X2bs <- t(X2bs)
        if(dfapprox){
            M <- colMeans(X2bs)
            V <- apply(X2bs, 2, var)
            upsilon <- 2 * M^2 / V
            gamma <- M / upsilon
            df <- upsilon
            for(i in seq_len(length(which.items))){
                item <- extract.item(mod, which.items[i])
                df[i] <- upsilon[i] - sum(item@est)
            }
            ret <- data.frame(X2_star_scaled=org/gamma, df.X2_star_scaled=df,
                              RMSEA.X2_star_scaled=rmsea(org/gamma, df, N=N),
                              p.X2_star_scaled=p.adjust(pchisq(org/gamma, df, lower.tail=FALSE),
                                                        method=p.adjust))
        } else {
            p <- apply(t(X2bs) > org, 1, mean)
            ret <- data.frame(X2_star=org, p.X2_star=p.adjust(p, method=p.adjust))
        }
        ret
    }

    if(missing(x)) missingMsg('x')
    if(!is.null(empirical.plot))
        stopifnot("Model must be unidimensional to use empirical.plot option"=
                      extract.mirt(x, 'nfact') == 1L)
    stopifnot(length(p.adjust) == 1L)
    if(return.tables){
        stopifnot(length(fit_stats) == 1L)
        stopifnot(fit_stats %in% c('X2', 'S_X2', 'X2*'))
    }
    if(is(x, 'MixedClass'))
        stop('MixedClass objects are not supported', call.=FALSE)
    if(!is.null(empirical.plot) && return.tables && fit_stats == 'X2')
        stop('Please select empirical.plot or return.table, not both', call.=FALSE)
    if(!all(fit_stats %in% c('S_X2', 'Zh', 'X2', 'G2', 'infit', 'PV_Q1', 'PV_Q1*', 'X2*', 'X2*_df')))
        stop('Unsupported fit_stats element requested', call.=FALSE)
    if(any(c('X2', 'G2', 'PV_Q1', 'PV_Q1*') %in% fit_stats) && extract.mirt(x, 'nfact') > 1L)
        stop('X2, G2, PV_Q1, or PV_Q1* are for unidimensional models only', call.=FALSE)
    S_X2 <- 'S_X2' %in% fit_stats
    Zh <- 'Zh' %in% fit_stats
    X2 <- 'X2' %in% fit_stats
    G2 <- 'G2' %in% fit_stats
    infit <- 'infit' %in% fit_stats
    if(!is.null(empirical.plot))
        which.items <- empirical.plot
    which.items <- sort(which.items)
    if(!is.null(empirical.plot) || (return.tables && fit_stats == 'X2')){
        Zh <- FALSE
        if(length(which.items) > 1L)
            stop('Plots and tables only supported for 1 item at a time', call.=FALSE)
    }
    stopifnot(is.numeric(empirical.CI))
    if( (return.tables && fit_stats == 'X2') || !is.null(empirical.plot)){
        X2 <- TRUE
        S_X2 <- Zh <- infit <- G2 <- FALSE
    }
    J <- ncol(x@Data$data)
    if(na.rm) x <- removeMissing(x)
    if(na.rm) message('Sample size after row-wise response data removal: ',
                      nrow(extract.mirt(x, 'data')))
    if(nrow(extract.mirt(x, 'data')) == 0L) stop('No data!', call.=FALSE)
    if(any(is.na(x@Data$data)) && (Zh || S_X2) && impute == 0)
        stop('Only X2, G2, PV_Q1, PV_Q1*, infit, X2*, and X2*_df can be computed with missing data.
             Pass na.rm=TRUE to remove missing data row-wise', call.=FALSE)
    if(!is.null(Theta)){
        if(!is.matrix(Theta)) Theta <- matrix(Theta)
        if(nrow(Theta) > nrow(x@Data$data))
            Theta <- Theta[-extract.mirt(x, 'completely_missing'), , drop=FALSE]
        stopifnot("Theta does not have the correct number of rows" =
                      nrow(Theta) == nrow(x@Data$data))
    }

    if(is(x, 'MultipleGroupClass') || is(x, 'DiscreteClass')){
        discrete <- is(x, 'DiscreteClass')
        if(discrete)
            for(g in seq_len(x@Data$ngroups))
                x@ParObjects$pars[[g]]@ParObjects$pars[[J+1L]]@est[] <- FALSE
        ret <- vector('list', x@Data$ngroups)
        if(is.null(Theta))
            Theta <- fscores(x, method=method, full.scores=TRUE, plausible.draws=impute,
                             rotate = 'none', leave_missing=TRUE, ...)
        for(g in seq_len(x@Data$ngroups)){
            if(impute > 0L){
                tmpTheta <- vector('list', impute)
                for(i in seq_len(length(tmpTheta)))
                    tmpTheta[[i]] <- Theta[[i]][x@Data$groupNames[g] == x@Data$group, , drop=FALSE]
            } else tmpTheta <- Theta[x@Data$groupNames[g] == x@Data$group, , drop=FALSE]
            tmp_obj <- MGC2SC(x, g)
            ret[[g]] <- itemfit(tmp_obj, fit_stats=fit_stats, group.size=group.size, group.bins=group.bins,
                                group.fun=group.fun, mincell=mincell, mincell.X2=mincell.X2,
                                empirical.plot=empirical.plot,
                                S_X2.plot=S_X2.plot, return.tables=return.tables,
                                S_X2.plot_raw.score = S_X2.plot_raw.score,
                                Theta=tmpTheta, empirical.CI=empirical.CI, method=method,
                                impute=impute, discrete=discrete, p.adjust=p.adjust, ...)
        }
        names(ret) <- x@Data$groupNames
        if(!is.null(empirical.plot) || !is.null(S_X2.plot)){
            for(g in 1L:length(ret))
                ret[[g]]$main <- sprintf("%s (%s)", ret[[g]]$main, names(ret)[g])
            return(do.call(gridExtra::grid.arrange, ret))
        }
        if(extract.mirt(x, 'ngroups') == 1L) return(ret[[1L]])
        return(ret)
    }
    dots <- list(...)
    discrete <- dots$discrete
    discrete <- ifelse(is.null(discrete), FALSE, discrete)
    if(x@Model$nfact > 3L && is.null(dots$QMC) && !discrete)
        warning('High-dimensional models should use quasi-Monte Carlo integration. Pass QMC=TRUE',
                call.=FALSE)
    mixture <- is(x, 'MixtureClass')
    if(mixture && !all(fit_stats == 'S_X2'))
        stop("Only S_X2 fit statistic supported for mixture models")
    pis <- NULL
    if(mixture){
        discrete <- TRUE
        pis <- extract.mirt(x, 'pis')
    }
    if((return.tables && fit_stats == 'S_X2') || discrete) Zh <- X2 <- FALSE
    ret <- data.frame(item=colnames(x@Data$data)[which.items])
    itemloc <- x@Model$itemloc
    pars <- x@ParObjects$pars
    if(Zh || infit){
        if(is.null(Theta))
            Theta <- fscores(x, verbose=FALSE, full.scores=TRUE, method=method,
                             leave_missing=TRUE, rotate = 'none', ...)
        prodlist <- attr(pars, 'prodlist')
        nfact <- x@Model$nfact + length(prodlist)
        fulldata <- x@Data$fulldata[[1L]]
        if(any(Theta %in% c(Inf, -Inf))){
            for(i in 1L:ncol(Theta)){
                tmp <- Theta[,i]
                tmp[tmp %in% c(-Inf, Inf)] <- NA
                Theta[Theta[,i] == Inf, i] <- max(tmp, na.rm=TRUE) + .1
                Theta[Theta[,i] == -Inf, i] <- min(tmp, na.rm=TRUE) - .1
            }
        }
        if(Zh){
            N <- nrow(Theta)
            itemtrace <- matrix(0, ncol=ncol(fulldata), nrow=N)
            for (i in which.items)
                itemtrace[ ,itemloc[i]:(itemloc[i+1L] - 1L)] <- ProbTrace(x=pars[[i]], Theta=Theta)
            log_itemtrace <- log(itemtrace)
            LL <- log_itemtrace * fulldata
            Lmatrix <- matrix(LL[as.logical(fulldata)], N, J)
            mu <- sigma2 <- rep(0, J)
            for(item in which.items){
                P <- itemtrace[ ,itemloc[item]:(itemloc[item+1L]-1L)]
                log_P <- log_itemtrace[ ,itemloc[item]:(itemloc[item+1L]-1L)]
                mu[item] <- sum(P * log_P)
                for(i in seq_len(ncol(P)))
                    for(j in seq_len(ncol(P)))
                        if(i != j)
                            sigma2[item] <- sigma2[item] + sum(P[,i] * P[,j] *
                                                                   log_P[,i] * log(P[,i]/P[,j]))
            }
            tmp <- (colSums(Lmatrix) - mu) / sqrt(sigma2)
            ret$Zh <- tmp[which.items]
        }
        if(infit){
            dat_is_na <- apply(extract.mirt(x, 'data'), 2L, is.na)
            N <- colSums(!dat_is_na)
            attr(x, 'inoutfitreturn') <- TRUE
            pf <- personfit(x, method=method, Theta=Theta)
            pf$resid[dat_is_na] <- 0
            pf$C[dat_is_na] <- 0
            z2 <- pf$resid^2 / pf$W
            outfit <- colSums(z2, na.rm = TRUE) / N
            q.outfit <- sqrt(colSums((pf$C / pf$W^2) / N^2, na.rm=TRUE) - 1 / N)
            q.outfit[q.outfit > 1.4142] <- 1.4142
            z.outfit <- (outfit^(1/3) - 1) * (3/q.outfit) + (q.outfit/3)
            infit <- colSums(pf$W * z2, na.rm=TRUE) / colSums(pf$W, na.rm=TRUE)
            q.infit <- sqrt(colSums(pf$C - pf$W^2, na.rm=TRUE) /
                                colSums(pf$W, na.rm=TRUE)^2)
            q.infit[q.infit > 1.4142] <- 1.4142
            z.infit <- (infit^(1/3) - 1) * (3/q.infit) + (q.infit/3)
            ret$outfit <- outfit[which.items]
            ret$z.outfit <- z.outfit[which.items]
            ret$infit <- infit[which.items]
            ret$z.infit <- z.infit[which.items]
        }
    }
    if(( (X2 || G2) || !is.null(empirical.plot) ||
         (return.tables && fit_stats == 'X2')) && x@Model$nfact == 1L){
        if(is.null(Theta))
            Theta <- fscores(x, verbose=FALSE, full.scores=TRUE, method=method,
                             rotate = 'none', leave_missing=TRUE, ...)
        nfact <- ncol(Theta)
        prodlist <- attr(pars, 'prodlist')
        fulldata <- x@Data$fulldata[[1L]]
        if(any(Theta %in% c(Inf, -Inf))){
            for(i in seq_len(ncol(Theta))){
                tmp <- Theta[,i]
                tmp[tmp %in% c(-Inf, Inf)] <- NA
                Theta[Theta[,i] == Inf, i] <- max(tmp, na.rm=TRUE) + .1
                Theta[Theta[,i] == -Inf, i] <- min(tmp, na.rm=TRUE) - .1
            }
        }
        ord <- order(Theta[,1L])
        fulldata <- fulldata[ord,]
        pick <- !is.na(x@Data$data)
        pick <- pick[ord, ]
        Theta <- Theta[ord, , drop = FALSE]
        den <- dnorm(Theta, 0, .5)
        den <- den / sum(den)
        cumTheta <- cumsum(den)
        X2.value <- G2.value <- df.G2 <- df.X2 <- numeric(J)
        if(!is.null(empirical.plot)){
            if(nfact > 1L) stop('Cannot make empirical plot for multidimensional models', call.=FALSE)
            if(!is.numeric(empirical.plot)){
                inames <- colnames(x@Data$data)
                ind <- 1L:length(inames)
                empirical.plot <- ind[inames == empirical.plot]
            }
        }
        for (i in which.items){
            if(!is.na(group.size)){
                Groups <- rep(20, sum(pick[,i]))
                ngroups <- ceiling(sum(pick[,i]) / group.size)
                weight <- 1/ngroups
                for(q in seq_len(length(Groups)))
                    Groups[round(cumTheta[pick[,i]],2) >= weight*(q-1) &
                               round(cumTheta[pick[,i]],2) < weight*q] <- q
            } else {
                ngroups <- group.bins
                Groups <- rep(1:group.bins, each = floor(sum(pick[,i]) / ngroups))
                if(sum(pick[,i]) %% ngroups > 0L){
                    c1 <- sum(pick[,i]) %% ngroups
                    Groups <- c(rep(1, floor(c1/2)), Groups)
                    Groups <- c(Groups, rep(ngroups, c1 - floor(c1/2)))
                }
            }
            if(return.tables){
                Etable <- vector('list', ngroups)
                mtheta_nms <- numeric(ngroups)
            }
            if(!is.null(empirical.plot))
                empirical.plot_points <- matrix(NA, length(unique(Groups)), x@Data$K[empirical.plot] + 2L)
            for(j in unique(Groups)){
                tmpdat <- fulldata[pick[,i], , drop=FALSE]
                dat <- tmpdat[Groups == j, itemloc[i]:(itemloc[i+1] - 1), drop = FALSE]
                if(nrow(dat) <= 1L) next
                colnames(dat) <- paste0("cat_", sort(unique(extract.mirt(x, "data")[,i])))
                r <- colSums(dat)
                N <- nrow(dat)
                tmpTheta <- Theta[pick[,i], , drop=FALSE]
                mtheta <- matrix(group.fun(tmpTheta[Groups == j,]), nrow=1)
                if(!is.null(empirical.plot)){
                    tmp <- r/N
                    empirical.plot_points[j, ] <- c(mtheta, N, tmp)
                }
                P <- ProbTrace(x=pars[[i]], Theta=mtheta)
                if(return.tables && any(N * P < mincell.X2)){
                    while(TRUE){
                        wch <- which(N * P < mincell.X2)
                        if(!length(wch) || length(r) == 1L) break
                        for(p in wch){
                            if(p == 1L){
                                r[2L] <- r[1L] + r[2L]
                                P[2L] <- P[1L] + P[2L]
                            } else {
                                r[p-1L] <- r[p] + r[p-1L]
                                P[p-1L] <- P[p] + P[p-1L]
                            }
                        }
                        r <- r[-wch]
                        P <- P[-wch]
                    }
                    if(length(r) == 1L) next
                }
                E <- N*P
                if(return.tables){
                    Etable[[j]] <- data.frame(Observed=r, Expected=as.vector(E),
                                              z.Residual=as.vector(sqrt((r - E)^2 / E) * sign(r-E)))
                    mtheta_nms[j] <- mtheta
                } else {
                    X2.value[i] <- X2.value[i] + sum((r - E)^2 / E)
                    df.X2[i] <- df.X2[i] + length(r) - 1L
                    tmp <- r * log(r/E)
                    # replace with 0 is fine:
                    #   https://stats.stackexchange.com/questions/107718/goodness-of-fit-likelihood-ratio-test-with-zero-values
                    count_nonzero <- sum(is.finite(tmp))
                    tmp[!is.finite(tmp)] <- 0
                    if(length(tmp) > 1L){
                        G2.value[i] <- G2.value[i] + 2*sum(tmp)
                        df.G2[i] <- df.G2[i] + count_nonzero - 1L
                    }
                }
            }
            if(return.tables){
                names(Etable) <- paste0('theta = ', round(mtheta_nms, 4))
                return(Etable)
            }
            df.X2[i] <- df.X2[i] - sum(pars[[i]]@est)
            df.G2[i] <- df.G2[i] - sum(pars[[i]]@est)
        }
        X2.value[X2.value == 0] <- NA
        G2.value[G2.value == 0] <- NA
        if(!is.null(empirical.plot)){
            K <- x@Data$K[empirical.plot]
            EPCI.lower <- EPCI.upper <- NULL
            if(K == 2 && empirical.CI != 0){
                p.L <- function(x, alpha) if (x[1] == 0) 0 else qbeta(alpha, x[1], x[2] - x[1] + 1)
                p.U <- function(x, alpha) if (x[1] == x[2]) 1 else
                    qbeta(1 - alpha, x[1] + 1, x[2] - x[1])
                N <- empirical.plot_points[,2]
                O <- empirical.plot_points[,ncol(empirical.plot_points)] * N
                EPCI.lower <- apply(cbind(O, N), 1, p.L, (1-empirical.CI)/2)
                EPCI.upper <- apply(cbind(O, N), 1, p.U, (1-empirical.CI)/2)
            }
            theta <- seq(-4,4, length.out=max(c(50, ngroups)))
            ThetaFull <- thetaComb(theta, nfact)
            empirical.plot_P <- ProbTrace(pars[[empirical.plot]], ThetaFull)
            empirical.plot_points <- empirical.plot_points[,-2]
            colnames(empirical.plot_points) <- c('theta', paste0('p.', 1:K))
            if(empirical.poly.collapse){
                score <- 1L:ncol(empirical.plot_P) - 1L
                plt1 <- data.frame(ThetaFull, colSums(t(empirical.plot_P) * score))
                plt2 <- data.frame(empirical.plot_points[,1], colSums(t(empirical.plot_points[,-1]) * score))
                colnames(plt1) <- colnames(plt2) <- c('Theta', "E")
                return(xyplot(E~Theta, plt1,
                              main = paste('Empirical plot for item', empirical.plot),
                              xlab = expression(theta), ylab=expression(E(theta)),
                              panel = function(x, y, subscripts, ...){
                                  panel.xyplot(x=x, y=y, type='l',
                                               subscripts=subscripts, ...)
                                  panel.points(cbind(plt2$Theta[subscripts], plt2$E[subscripts]),
                                               col='black', ...)
                              },
                              par.strip.text=par.strip.text, par.settings=par.settings, ...))
            }
            while(nrow(empirical.plot_points) < nrow(empirical.plot_P))
                empirical.plot_points <- rbind(empirical.plot_points,
                                               rep(NA, length(empirical.plot_points[1,])))
            plt.1 <- data.frame(id = 1:nrow(ThetaFull), Theta=ThetaFull, P=empirical.plot_P)
            plt.1 <- reshape(plt.1, varying = 3:ncol(plt.1), direction = 'long', timevar = 'cat')
            plt.2 <- data.frame(id = 1:nrow(empirical.plot_points), empirical.plot_points)
            plt.2 <- reshape(plt.2, varying = 3:ncol(plt.2), direction = 'long', timevar = 'cat')
            plt <- cbind(plt.1, plt.2)
            if(K == 2) plt <- plt[plt$cat != 1, ]
            plt$cat <- factor(paste0('Category ', plt$cat - 1 + extract.mirt(x, 'mins')[which.items]))
            return(xyplot(if(K == 2) P~Theta else P ~ Theta|cat, plt, groups = cat,
                          main = paste('Empirical plot for item', empirical.plot),
                            ylim = c(-0.1,1.1), xlab = expression(theta), ylab=expression(P(theta)),
                          EPCI.lower=EPCI.lower, EPCI.upper=EPCI.upper,
                          panel = function(x, y, groups, subscripts, EPCI.lower, EPCI.upper, ...){
                              panel.xyplot(x=x, y=y, groups=groups, type='l',
                                           subscripts=subscripts, ...)
                              panel.points(cbind(plt$theta[subscripts], plt$p[subscripts]),
                                           col='black', ...)
                              if(!is.null(EPCI.lower)){
                                  theta <- na.omit(plt$theta)
                                  for(i in 1:length(theta))
                                      panel.lines(c(theta[i], theta[i]), c(EPCI.lower[i],
                                                                           EPCI.upper[i]),
                                                  lty = 2, col = 'red')
                              }
                          },
                          par.strip.text=par.strip.text, par.settings=par.settings, ...))
        }
        if(X2){
            ret$X2 <- X2.value[which.items]
            ret$df.X2 <- df.X2[which.items]
            ret$RMSEA.X2 <- rmsea(ret$X2, ret$df.X2, N=nrow(fulldata))
            ret$p.X2 <- suppressWarnings(pchisq(ret$X2, ret$df.X2, lower.tail=FALSE))
            ret$df.X2[ret$df.X2 <= 0] <- 0
            ret$p.X2[ret$df.X2 <= 0] <- NaN
            ret$p.X2 <- p.adjust(ret$p.X2, method=p.adjust)
        }
        if(G2){
            ret$G2 <- G2.value[which.items]
            ret$df.G2 <- df.G2[which.items]
            ret$RMSEA.G2 <- rmsea(ret$G2, ret$df.G2, N=nrow(fulldata))
            ret$p.G2 <- suppressWarnings(pchisq(ret$G2, ret$df.G2, lower.tail=FALSE))
            ret$df.G2[ret$df.G2 <= 0] <- 0
            ret$p.G2[ret$df.G2 <= 0] <- NaN
            ret$p.G2 <- p.adjust(ret$p.G2, method=p.adjust)
        }
    }
    if(S_X2 || !is.null(S_X2.plot)){
        dat <- x@Data$data
        adj <- x@Data$mins
        dat <- t(t(dat) - adj)
        S_X2 <- df.S_X2 <- rep(NA, J)
        O <- makeObstables(dat, x@Data$K, which.items=which.items)
        Nk <- rowSums(O[[which(sapply(O, is.matrix))[1L]]])
        dots <- list(...)
        QMC <- ifelse(is.null(dots$QMC), FALSE, dots$QMC)
        use_dentype_estimate <- ifelse(is.null(dots$use_dentype_estimate),
                                       FALSE, dots$use_dentype_estimate)
        quadpts <- dots$quadpts
        if(is.null(quadpts) && QMC) quadpts <- 5000L
        if(is.null(quadpts)) quadpts <- select_quadpts(x@Model$nfact)
        if(x@Model$nfact > 3L && !QMC && method %in% c('EAP', 'EAPsum') && !discrete)
            warning('High-dimensional models should use quasi-Monte Carlo integration. Pass QMC=TRUE',
                    call.=FALSE)
        theta_lim <- dots$theta_lim
        if(is.null(theta_lim)) theta_lim <- c(-6,6)
        gp <- if(mixture) list() else ExtractGroupPars(pars[[length(pars)]])
        if(!mixture && x@ParObjects$pars[[extract.mirt(x, 'nitems')+1L]]@dentype == 'custom'){
            den_fun <- function(Theta, ...){
                obj <- x@ParObjects$pars[[extract.mirt(x, 'nitems')+1L]]
                as.vector(obj@den(obj, Theta=Theta))
            }
            if(is.null(dots$theta_lim) && !is.null(x@Internals$theta_lim))
                theta_lim <- x@Internals$theta_lim
        } else den_fun <- mirt_dmvnorm
        E <- EAPsum(x, S_X2 = TRUE, gp = gp, CUSTOM.IND=x@Internals$CUSTOM.IND, den_fun=mirt_dmvnorm,
                    quadpts=quadpts, theta_lim=theta_lim, discrete=discrete, QMC=QMC, mixture=mixture,
                    pis=pis, which.items=which.items, use_dentype_estimate=use_dentype_estimate)
        for(i in which.items)
            E[[i]] <- E[[i]] * Nk
        if(!is.null(S_X2.plot)){
            Osub <- O[[S_X2.plot]]
            Osub <- Osub / rowSums(Osub)
            Esub <- E[[S_X2.plot]]
            Esub[is.na(Esub)] <- 0
            Esub <- Esub / rowSums(Esub)
            if(!S_X2.plot_raw.score){
                stopifnot(extract.mirt(x, 'nfact') == 1L)
                fs <- fscores(x, method = 'EAPsum', full.scores=FALSE, verbose=FALSE)
                scores <- fs[,'F1']
                scores <- scores[-c(1, length(scores))]
            } else scores <- 1L:nrow(Osub) + sum(extract.mirt(x, 'mins'))
            df <- data.frame(Scores=scores,
                             y=c(as.numeric(Osub), as.numeric(Esub)),
                             type = rep(c('observed', 'expected'), each = prod(dim(Osub))),
                             category=rep(paste0('cat', 1L:ncol(Osub)), each=nrow(Osub)))
            return(xyplot(y~Scores|category, df, type='b', group=df$type,
                   xlab = ifelse(S_X2.plot_raw.score, expression(Sum-Score), expression(theta)),
                   ylab=expression(P(theta)), auto.key=auto.key, par.strip.text=par.strip.text,
                   main = paste0("Observed vs Expected Values for Item ", S_X2.plot),
                   par.settings=par.settings, ...))
        }
        coll <- collapseCells(O, E, mincell=mincell)
        if(return.tables)
            return(list(O.org=O[which.items], E.org=E[which.items],
                        O=coll$O[which.items], E=coll$E[which.items]))
        O <- coll$O
        E <- coll$E
        for(i in seq_len(J)){
            if (is.null(dim(O[[i]])) || is.null(E[[i]])) next
            S_X2[i] <- sum((O[[i]] - E[[i]])^2 / E[[i]], na.rm = TRUE)
            df.S_X2[i] <- if(mixture){
                tmp <- sum(sapply(1L:length(pis), function(g)
                    sum(x@ParObjects$pars[[g]]@ParObjects$pars[[i]]@est)))
                sum(!is.na(E[[i]])) - nrow(E[[i]]) - tmp
            } else sum(!is.na(E[[i]])) - nrow(E[[i]]) - sum(pars[[i]]@est)
        }
        df.S_X2 <- if(mixture){
            df.S_X2 - sum(sapply(1L:length(pis), function(g)
                sum(x@ParObjects$pars[[g]]@ParObjects$pars[[J+1L]]@est)))
        } else df.S_X2 - sum(pars[[J+1L]]@est)
        df.S_X2[df.S_X2 < 0] <- 0
        S_X2[df.S_X2 == 0] <- NaN
        ret$S_X2 <- S_X2[which.items]
        ret$df.S_X2 <- df.S_X2[which.items]
        ret$RMSEA.S_X2 <- rmsea(ret$S_X2, ret$df.S_X2, N=nrow(dat))
        ret$p.S_X2 <- suppressWarnings(pchisq(ret$S_X2, ret$df.S_X2, lower.tail=FALSE))
        ret$p.S_X2 <- p.adjust(ret$p.S_X2, method=p.adjust)
    }
    itemtype <- extract.mirt(x, 'itemtype')
    if(any(c('PV_Q1', 'PV_Q1*') %in% fit_stats)){
        tmp <- PV_itemfit(x, which.items=which.items, draws=pv_draws, itemtype=itemtype,
                          p.adjust=p.adjust, mincell.X2=mincell.X2, ...)
        ret <- cbind(ret, tmp)
    }
    is_NA <- is.na(x@Data$data)
    if('PV_Q1*' %in% fit_stats){
        tmp <- boot_PV(x, is_NA=is_NA, org=tmp, which.items=which.items,
                       itemtype=itemtype, boot=boot, draws=pv_draws, p.adjust=p.adjust,
                       mincell.X2=mincell.X2, ...)
        ret <- cbind(ret, tmp)
    }
    if('X2*' %in% fit_stats){
        tmp <- StoneFit(x, is_NA=is_NA, which.items=which.items, boot=boot, dfapprox=FALSE,
                        itemtype=itemtype, ETrange=ETrange, ETpoints=ETpoints,
                        p.adjust=p.adjust, return.tables=return.tables, ...)
        if(return.tables){
            if(length(which.items) == 1L) tmp <- tmp[[1]]
            return(tmp)
        }
        ret <- cbind(ret, tmp)
    }
    if('X2*_df' %in% fit_stats){
        tmp <- StoneFit(x, is_NA=is_NA, which.items=which.items, boot=boot_dfapprox, dfapprox=TRUE,
                        itemtype=itemtype, ETrange=ETrange, ETpoints=ETpoints, p.adjust=p.adjust, ...)
        ret <- cbind(ret, tmp)
    }
    ret <- as.mirt_df(ret)
    return(ret)
}

Try the mirt package in your browser

Any scripts or data that you put into this service are public.

mirt documentation built on Sept. 11, 2024, 7:14 p.m.