Nothing
#' Control Values for nlme Fit with extra options for nlmixr
#'
#' The values supplied in the function call replace the defaults and
#' a list with all possible arguments is returned. The returned list
#' is used as the ‘control’ argument to the ‘nlme’ function.
#'
#' @inheritParams nlme::nlmeControl
#' @inheritParams nlme::nlme
#' @param returnNlme Returns the nlme object instead of the nlmixr
#' object (by default FALSE). If any of the nlme specific options
#' of `random`, `fixed`, `sens`, the nlme object is returned
#' @inheritParams foceiControl
#' @inheritParams saemControl
#' @return a nlmixr-nlme list
#' @examples
#' nlmeControl()
#' nlmixr2NlmeControl()
#' @family Estimation control
#' @export
nlmixr2NlmeControl <- function(maxIter = 100, pnlsMaxIter = 100, msMaxIter = 100, minScale = 0.001,
tolerance = 1e-05, niterEM = 25, pnlsTol = 0.001, msTol = 1e-06,
returnObject = FALSE, msVerbose = FALSE, msWarnNoConv = TRUE,
gradHess = TRUE, apVar = TRUE, .relStep = .Machine$double.eps^(1/3),
minAbsParApVar = 0.05, opt = c("nlminb", "nlm"), natural = TRUE,
sigma = NULL, optExpression=TRUE, literalFix=TRUE, sumProd=FALSE,
rxControl=NULL,
method=c("ML", "REML"),
random=NULL, fixed=NULL, weights=NULL, verbose=TRUE, returnNlme=FALSE,
addProp = c("combined2", "combined1"), calcTables=TRUE, compress=TRUE,
adjObf=TRUE, ci=0.95, sigdig=4, sigdigTable=NULL, muRefCovAlg=TRUE, ...) {
checkmate::assertLogical(optExpression, len=1, any.missing=FALSE)
checkmate::assertLogical(literalFix, len=1, any.missing=FALSE)
checkmate::assertLogical(sumProd, len=1, any.missing=FALSE)
checkmate::assertLogical(returnObject, len=1, any.missing=FALSE)
checkmate::assertLogical(msVerbose, len=1, any.missing=FALSE)
checkmate::assertLogical(msWarnNoConv, len=1, any.missing=FALSE)
checkmate::assertLogical(gradHess, len=1, any.missing=FALSE)
checkmate::assertLogical(apVar, len=1, any.missing=FALSE)
checkmate::assertLogical(natural, len=1, any.missing=FALSE)
checkmate::assertLogical(verbose, len=1, any.missing=FALSE)
checkmate::assertLogical(returnNlme, len=1, any.missing=FALSE)
checkmate::assertLogical(calcTables, len=1, any.missing=FALSE)
checkmate::assertLogical(compress, len=1, any.missing=TRUE)
checkmate::assertLogical(adjObf, len=1, any.missing=TRUE)
checkmate::assertIntegerish(pnlsMaxIter, len=1, any.missing=FALSE, lower=1)
checkmate::assertIntegerish(msMaxIter, len=1, any.missing=FALSE, lower=1)
checkmate::assertIntegerish(niterEM, len=1, any.missing=FALSE, lower=1)
checkmate::assertNumeric(minScale, len=1, any.missing=FALSE, lower=0)
checkmate::assertNumeric(pnlsTol, len=1, any.missing=FALSE, lower=0)
checkmate::assertNumeric(msTol, len=1, any.missing=FALSE, lower=0)
checkmate::assertNumeric(tolerance, len=1, any.missing=FALSE, lower=0)
checkmate::assertNumeric(.relStep, len=1, any.missing=FALSE, lower=0)
checkmate::assertNumeric(minAbsParApVar, len=1, any.missing=FALSE, lower=0)
checkmate::assertNumeric(ci, lower=0, upper=1, any.missing=FALSE, len=1)
checkmate::assertLogical(muRefCovAlg, any.missing=FALSE, len=1)
method <- match.arg(method)
addProp <- match.arg(addProp)
.xtra <- list(...)
.bad <- names(.xtra)
.bad <- .bad[!(.bad %in% c("genRxControl", "covMethod"))]
if (length(.bad) > 0) {
stop("unused argument: ", paste
(paste0("'", .bad, "'", sep=""), collapse=", "),
call.=FALSE)
}
.genRxControl <- FALSE
if (!is.null(.xtra$genRxControl)) {
.genRxControl <- .xtra$genRxControl
}
if (is.null(rxControl)) {
if (is.null(sigdig)) {
rxControl <- rxode2::rxControl(sigdig=sigdig)
} else {
rxControl <- rxode2::rxControl(atol=1e-4, rtol=1e-4)
}
.genRxControl <- TRUE
} else if (inherits(rxControl, "rxControl")) {
} else if (is.list(rxControl)) {
rxControl <- do.call(rxode2::rxControl, rxControl)
} else {
stop("solving options 'rxControl' needs to be generated from 'rxode2::rxControl'", call=FALSE)
}
if (is.null(sigma))
sigma <- 0
else if (!is.finite(sigma) || length(sigma) != 1 || sigma < 0)
stop("Within-group std. dev. must be a positive numeric value")
if (!is.null(sigdig)) {
checkmate::assertNumeric(sigdig, lower=1, finite=TRUE, any.missing=TRUE, len=1)
if (is.null(sigdigTable)) {
sigdigTable <- round(sigdig)
}
}
if (is.null(sigdigTable)) {
sigdigTable <- 3
}
checkmate::assertIntegerish(sigdigTable, lower=1, len=1, any.missing=FALSE)
.ret <- list(maxIter = maxIter, pnlsMaxIter = pnlsMaxIter, msMaxIter = msMaxIter,
minScale = minScale, tolerance = tolerance, niterEM = niterEM,
pnlsTol = pnlsTol, msTol = msTol, returnObject = returnObject,
msVerbose = msVerbose, msWarnNoConv = msWarnNoConv, gradHess = gradHess,
apVar = apVar, .relStep = .relStep, minAbsParApVar = minAbsParApVar,
opt = match.arg(opt), natural = natural, sigma = sigma,
optExpression=optExpression, literalFix=literalFix, sumProd=sumProd,
rxControl=rxControl, method=method,verbose=verbose,
returnNlme=returnNlme, addProp=addProp, calcTables=calcTables,
compress=compress, random=random, fixed=fixed, weights=weights,
ci=ci, sigdig=sigdig, sigdigTable=sigdigTable, muRefCovAlg=muRefCovAlg,
genRxControl=.genRxControl)
class(.ret) <- "nlmeControl"
.ret
}
#' @export
rxUiDeparse.nlmeControl <- function(object, var) {
.default <- nlmeControl()
.w <- .deparseDifferent(.default, object, "genRxControl")
.deparseFinal(.default, object, .w, var)
}
#' @rdname nlmixr2NlmeControl
#' @export
nlmeControl <- nlmixr2NlmeControl
#' Get the nlme family control
#'
#' @param env nlme optimization environment
#' @param ... Other arguments
#' @return Nothing, called for side effects
#' @author Matthew L. Fidler
#' @noRd
.nlmeFamilyControl <- function(env, ...) {
.ui <- env$ui
.control <- env$control
if (is.null(.control)) {
.control <- nlmixr2est::nlmeControl()
}
if (!inherits(.control, "nlmeControl")){
.control <- do.call(nlmixr2est::nlmeControl, .control)
}
assign("control", .control, envir=.ui)
}
#' A surrogate function for nlme to call for ode solving
#'
#' @param pars Parameters that will be estimated
#' @param id The patient identifiers for the estimated data.
#' @return Predictions
#' @details
#' This is an internal function and should not be called directly.
#' @author Matthew L. Fidler
#' @keywords internal
#' @export
.nlmixrNlmeFun <- function(pars, id) {
.ids <- as.character(unique(id))
.datF <- do.call(rbind, lapply(seq_along(.ids), function(i){
.datF <- nlmixr2global$nlmeFitDataAll[nlmixr2global$nlmeFitDataAll$ID == .ids[i], ]
.datF$ID <- i
.datF
}))
.pars <- as.data.frame(c(pars, list(ID=id)))
.pars <- .pars[!duplicated(.pars$ID),]
.pars$ID <- seq_along(.pars$ID)
row.names(.pars) <- NULL
.retF <- do.call(rxode2::rxSolve, c(list(object=nlmixr2global$nlmeFitRxModel, params=.pars, events=.datF),
nlmixr2global$nlmeFitRxControl))
.ret <- .retF$rx_pred_
.ret
}
#' Setup the data for nlme estimation
#'
#' @param dataSav Formatted Data
#' @return Nothing, called for side effects
#' @author Matthew L. Fidler
#' @noRd
.nlmeFitDataSetup <- function(dataSav) {
.dsAll <- dataSav[dataSav$EVID != 2, ] # Drop EVID=2 for estimation
nlmixr2global$nlmeFitDataAll <- .dsAll
}
.nlmeFitModel <- function(ui, dataSav, timeVaryingCovariates) {
.nlmeFitDataSetup(dataSav)
nlmixr2global$nlmeFitRxModel <- rxode2::rxode2(ui$nlmeRxModel)
nlmixr2global$nlmeFitRxControl <- rxode2::rxGetControl(ui, "rxControl", rxode2::rxControl())
.ctl <- ui$control
class(.ctl) <- NULL
.fixed <- rxode2::rxGetControl(ui, "fixed", NULL)
if (is.null(.fixed)) {
.fixed <- ui$nlmeFixedFormula
} else {
rxode2::rxAssignControlValue(ui, "returnNlme", TRUE)
}
.random <- rxode2::rxGetControl(ui, "random", NULL)
if (is.null(.random)) {
.random <- ui$nlmePdOmega
} else {
rxode2::rxAssignControlValue(ui, "returnNlme", TRUE)
}
.verbose <- rxode2::rxGetControl(ui, "verbose", TRUE)
.method <- rxode2::rxGetControl(ui, "method", "ML")
.weights <- rxode2::rxGetControl(ui, "weights", NULL)
if (is.null(.weights)) {
.weights <- ui$nlmeWeights
} else {
rxode2::rxAssignControlValue(ui, "returnNlme", TRUE)
}
ret <-
eval(bquote(nlme::nlme(
model=.(ui$nlmeModel),
data=nlme::groupedData(DV ~ TIME | ID, dataSav[dataSav$EVID == 0, ]),
method=.(.method),
fixed=.(.fixed),
random=.(.random),
start=.(ui$nlmeStart),
weights=.(.weights),
control=.(.ctl),
verbose=.(.verbose),
na.action=function(object, ...) {
object
}
)))
ret
}
#' Get the theta estimates from nlme using roxde2 ui
#'
#' @param nlme nlme object
#' @param ui rxode2 object
#' @return named theta vector
#' @author Matthew L. Fidler
#' @noRd
.nlmeGetTheta <- function(nlme, ui) {
.f <- nlme::fixef(nlme)
.predDf <- ui$predDf
.iniDf <- ui$iniDf
.errType <- .predDf$errType
if (.errType == "prop") {
.w <- which(ui$iniDf$err == "prop")
.prop <- setNames(nlme$sigma, ui$iniDf$name[.w])
return(c(.f, .prop))
} else if (.errType == "pow") {
.nlmePars <- coef(nlme$modelStruct$varStruct)
.w <- which(ui$iniDf$err == "pow2")
.pw <- setNames(.nlmePars["power"], ui$iniDf$name[.w])
.w <- which(ui$iniDf$err == "pow")
.coef <- setNames(nlme$sigma, ui$iniDf$name[.w])
return(c(.f, .coef, .pw))
} else if (.errType == "add") {
.w <- which(ui$iniDf$err == "add")
.add <- setNames(nlme$sigma, ui$iniDf$name[.w])
return(c(.f, .add))
}
.addProp <- .predDf$addProp
if (.addProp == "default") {
.addProp <- rxode2::rxGetControl(ui, "addProp", "combined2")
}
if (.addProp == "combined1") {
if (.errType == "add + prop") {
.nlmePars <- coef(nlme$modelStruct$varStruct)
.w <- which(ui$iniDf$err == "add")
.add <- setNames(exp(.nlmePars["const"]), ui$iniDf$name[.w])
.w <- which(ui$iniDf$err == "prop")
.prop <- setNames(nlme$sigma, ui$iniDf$name[.w])
c(.f, .add, .prop)
} else {
.nlmePars <- coef(nlme$modelStruct$varStruct)
.w <- which(ui$iniDf$err == "add")
.add <- setNames(exp(.nlmePars["const"]), ui$iniDf$name[.w])
.w <- which(ui$iniDf$err == "pow")
.prop <- setNames(nlme$sigma, ui$iniDf$name[.w])
.w <- which(ui$iniDf$err == "pow2")
.pow <- setNames(.nlmePars["power"], ui$iniDf$name[.w])
c(.f, .add, .prop, .pow)
}
} else {
if (.errType == "add + prop") {
.nlmePars <- coef(nlme$modelStruct$varStruct)
.w <- which(ui$iniDf$err == "add")
.add <- setNames(exp(.nlmePars["const"]), ui$iniDf$name[.w])
.w <- which(ui$iniDf$err == "prop")
.prop <- setNames(.nlmePars["prop"], ui$iniDf$name[.w])
c(.f, .add, .prop)
} else {
stop("add+prop combined2 does not support nlme power currently",
call.=FALSE)
}
}
}
#' Get non mu referenced names from mu referenced theta
#'
#' @param names Names to translate
#' @param ui rxode2 ui
#' @return non mu referenced names
#' @author Matthew L. Fidler
#' @noRd
.nlmeGetNonMuRefNames <- function(names, ui) {
.muRef <- ui$muRefDataFrame
vapply(names, function(n) {
.w <- which(.muRef$theta == n)
if (length(.w) == 1) return(.muRef$eta[.w])
n
}, character(1), USE.NAMES=FALSE)
}
#' Get the nlme eta matrix as expected for focei
#'
#' @param nlme nlme object
#' @param ui rxode2 ui object
#' @return matrix of eta estimates, ordered by ID and named by the eta names in focei.
#' @author Matthew L. Fidler
#' @noRd
.nlmeGetEtaMat <- function(nlme, ui) {
.etaMat <- nlme::ranef(nlme)
.etaMat <- .etaMat[order(as.numeric(row.names(.etaMat))),, drop = FALSE]
names(.etaMat) <- .nlmeGetNonMuRefNames(names(.etaMat), ui)
row.names(.etaMat) <- NULL
as.matrix(.etaMat)
}
#' Get the covariance from nlme
#'
#' @param nlme nlme object
#' @author Matthew L. Fidler
#' @noRd
.nlmeGetCov <- function(nlme) {
.snt <- summary(nlme)$tTable
.se <- .snt[,"Std.Error"]
if (length(.se) == 1) {
matrix(.se * .se, 1, 1, dimnames=list(rownames(.snt), rownames(.snt)))
} else {
.cov <- diag(.se * .se)
dimnames(.cov) <- list(rownames(.snt), rownames(.snt))
.cov
}
}
#' Get the omega matrix from nlme
#'
#' @param nlme nlme object
#' @param ui rxode2 object
#' @return Named omega matrix
#' @author Matthew L. Fidler
#' @noRd
.nlmeGetOmega <- function(nlme, ui) {
.omega <- ui$omega
diag(.omega) <- 0
.vc <- nlme::VarCorr(nlme)
.var <- as.matrix(.vc[,"Variance", drop = FALSE])
.rn <- rownames(.var)
.name <- .nlmeGetNonMuRefNames(.rn, ui)
.var <- setNames(suppressWarnings(as.numeric(.var)), .name)
.var <- .var[names(.var) != "Residual"]
if (length(.var) == 1) {
.ome <- matrix(.var, 1, 1)
} else {
.ome <- diag(.var)
}
.name <- names(.var)
dimnames(.ome) <- list(.name, .name)
if (all(.omega == 0)) {
return(.ome)
}
.cor2 <- as.data.frame(.vc[-length(.rn), -(1:2), drop = FALSE])
.cor2$extra <- ""
names(.cor2) <- rownames(.cor2)
.cor2 <- as.matrix(.cor2)
diag(.cor2) <- "1"
.cor2[upper.tri(.cor2)] <- .cor2[lower.tri(.cor2)]
.cor2 <- matrix(suppressMessages(as.numeric(.cor2)), nrow(.cor2), ncol(.cor2), dimnames=dimnames(.ome))
diag(.ome) <- sqrt(diag(.ome))
.ome <- .ome %*% .cor2 %*% .ome
.ome <- as.matrix(Matrix::nearPD(ui$omega)$mat)
dimnames(.ome) <- list(.name, .name)
.ome
}
#' @rdname nmObjHandleControlObject
#' @export
nmObjHandleControlObject.nlmeControl <- function(control, env) {
assign("nlmeControl", control, envir=env)
}
#' @rdname nmObjGetControl
#' @export
nmObjGetControl.nlme <- function(x, ...) {
.env <- x[[1]]
if (exists("nlmeControl", .env)) {
.control <- get("nlmeControl", .env)
if (inherits(.control, "nlmeControl")) return(.control)
}
if (exists("control", .env)) {
.control <- get("control", .env)
if (inherits(.control, "nlmeControl")) return(.control)
}
stop("cannot find nlme related control object", call.=FALSE)
}
.nlmeControlToFoceiControl <- function(env, assign=TRUE) {
.nlmeControl <- env$nlmeControl
.ui <- env$ui
.foceiControl <- foceiControl(rxControl=env$nlmeControl$rxControl,
maxOuterIterations=0L,
maxInnerIterations=0L,
covMethod=0L,
etaMat=env$etaMat,
sumProd=.nlmeControl$sumProd,
optExpression=.nlmeControl$optExpression,
literalFix=.nlmeControl$literalFix,
scaleTo=0,
calcTables=.nlmeControl$calcTables,
addProp=.nlmeControl$addProp,
skipCov=.ui$foceiSkipCov,
interaction=1L,
compress=.nlmeControl$compress,
ci=.nlmeControl$ci,
sigdigTable=.nlmeControl$sigdigTable)
if (assign) env$control <- .foceiControl
.foceiControl
}
#' @export
#' @rdname nmObjGetFoceiControl
nmObjGetFoceiControl.nlme <- function(x, ...) {
.nlmeControlToFoceiControl(x[[1]])
}
.nlmeFamilyFit <- function(env, ...) {
.ui <- env$ui
.control <- .ui$control
.data <- env$data
.ret <- new.env(parent=emptyenv())
# The environment needs:
# - table for table options
# - $origData -- Original Data
# - $dataSav -- Processed data from .foceiPreProcessData
# - $idLvl -- Level information for ID factor added
# - $covLvl -- Level information for items to convert to factor
# - $ui for ui fullTheta Full theta information
# - $etaObf data frame with ID, etas and OBJI
# - $cov For covariance
# - $covMethod for the method of calculating the covariance
# - $adjObf Should the objective function value be adjusted
# - $objective objective function value
# - $extra Extra print information
# - $method Estimation method (for printing)
# - $omega Omega matrix
# - $etaObf Eat objective function data frame
# - $theta Is a theta data frame
# - $model a list of model information for table generation. Needs a `predOnly` model
# - $message Message for display
# - $est estimation method
# - $ofvType (optional) tells the type of ofv is currently being used
# When running the focei problem to create the nlmixr object, you also need a
# foceiControl object
.ret$table <- env$table
.foceiPreProcessData(.data, .ret, .ui, .control$rxControl)
.et <- rxode2::etTrans(.ret$dataSav, .ui$mv0, addCmt=TRUE,
addlKeepsCov = .control$rxControl$addlKeepsCov,
addlDropSs = .control$rxControl$addlDropSs,
ssAtDoseTime = .control$rxControl$ssAtDoseTime)
# Just like saem, nlme can use mu-referenced covariates
.nTv <- attr(class(.et), ".rxode2.lst")$nTv
if (is.null(.nTv)) .nTv <- 0
.tv <- character(0)
if (.nTv != 0) {
.tv <- names(.et)[-seq(1, 6)]
}
.nlme <- .collectWarn(.nlmeFitModel(.ui, .ret$dataSav, timeVaryingCovariates=.tv), lst = TRUE)
.ret$nlme <- .nlme[[1]]
.ret$message <- NULL
lapply(.nlme[[2]], function(x){
warning(x, call.=FALSE)
if (regexpr("PNLS", x) != -1) {
.ret$message <- c(.ret$message, paste0(x, " (carefully review results)"))
}
})
if (is.null(.ret$message)) {
.ret$message <- ""
} else {
.ret$message <- paste(.ret$message, collapse="\n")
}
if (rxode2::rxGetControl(.ui, "returnNlme", FALSE)) {
return(.ret$nlme)
}
.ret$ui <- .ui
.ret$adjObf <- rxode2::rxGetControl(.ui, "adjObf", TRUE)
.ret$fullTheta <- .nlmeGetTheta(.ret$nlme, .ui)
.ret$cov <- .nlmeGetCov(.ret$nlme)
.ret$covMethod <- "nlme"
.ret$etaMat <- .nlmeGetEtaMat(.ret$nlme, .ui)
.ret$etaObf <- data.frame(ID = seq_along(.ret$etaMat[, 1]),
as.data.frame(.ret$etaMat),
OBJI = NA)
.ret$omega <- .nlmeGetOmega(.ret$nlme, .ui)
.ret$control <- .control
.ret$extra <- paste0(" by ", crayon::bold$yellow(ifelse(.control$method == "REML", "REML", "maximum likelihood")))
.nlmixr2FitUpdateParams(.ret)
nmObjHandleControlObject(.ret$control, .ret)
if (exists("control", .ui)) {
rm(list="control", envir=.ui)
}
.ret$est <- "nlme"
# There is no parameter history for nlme
.ret$objective <- -2 * as.numeric(logLik(.ret$nlme))
.ret$model <- .ui$ebe
.ret$est <- "nlme"
.ret$ofvType <- "nlme"
.nlmeControlToFoceiControl(.ret)
.ret$theta <- .ret$ui$saemThetaDataFrame
.ret <- nlmixr2CreateOutputFromUi(.ret$ui, data=.ret$origData, control=.ret$control, table=.ret$table, env=.ret, est="nlme")
.env <- .ret$env
.env$method <- "nlme"
.ret
}
#' @rdname nlmixr2Est
#' @export
nlmixr2Est.nlme <- function(env, ...) {
.model <- .uiApplyMu2(env)
.ui <- env$ui
rxode2::assertRxUiMixedOnly(.ui, " for the estimation routine 'nlme', try 'focei'", .var.name=.ui$modelName)
rxode2::assertRxUiNormal(.ui, " for the estimation routine 'nlme'", .var.name=.ui$modelName)
rxode2::assertRxUiSingleEndpoint(.ui, " for the estimation routine 'nlme'", .var.name=.ui$modelName)
rxode2::assertRxUiRandomOnIdOnly(.ui, " for the estimation routine 'nlme'", .var.name=.ui$modelName)
rxode2::assertRxUiEstimatedResiduals(.ui, " for the estimation routine 'nlme'", .var.name=.ui$modelName)
.nlmeFamilyControl(env, ...)
on.exit({if (exists("control", envir=.ui)) rm("control", envir=.ui)}, add=TRUE)
.uiFinalizeMu2(.nlmeFamilyFit(env, ...), .model)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.