Nothing
# classes: .averaging
#################### .averaging
#' @export
model_parameters.averaging <- function(model,
ci = 0.95,
component = "conditional",
exponentiate = FALSE,
p_adjust = NULL,
include_info = getOption("parameters_info", FALSE),
keep = NULL,
drop = NULL,
verbose = TRUE,
...) {
component <- insight::validate_argument(component, c("conditional", "full"))
out <- .model_parameters_generic(
model = model,
ci = ci,
merge_by = "Parameter",
exponentiate = exponentiate,
component = component,
p_adjust = p_adjust,
keep_parameters = keep,
drop_parameters = drop,
include_info = include_info,
...
)
attr(out, "object_name") <- insight::safe_deparse_symbol(substitute(model))
out
}
#' @export
standard_error.averaging <- function(model, component = "conditional", ...) {
component <- insight::validate_argument(component, c("conditional", "full"))
params <- insight::get_parameters(model, component = component)
if (component == "full") {
s <- summary(model)$coefmat.full
} else {
s <- summary(model)$coefmat.subset
}
.data_frame(
Parameter = .remove_backticks_from_string(params$Parameter),
SE = as.vector(s[, 3])
)
}
#' @export
p_value.averaging <- function(model, component = "conditional", ...) {
component <- insight::validate_argument(component, c("conditional", "full"))
params <- insight::get_parameters(model, component = component)
if (component == "full") {
s <- summary(model)$coefmat.full
} else {
s <- summary(model)$coefmat.subset
}
# to data frame
s <- as.data.frame(s)
# do we have a p-value column based on t?
pvcn <- which(colnames(s) == "Pr(>|t|)")
# if not, do we have a p-value column based on z?
if (length(pvcn) == 0) {
pvcn <- which(colnames(s) == "Pr(>|z|)")
}
# if not, default to ncol
if (length(pvcn) == 0) {
if (ncol(s) > 4) {
pvcn <- 5
} else {
pvcn <- 4
}
}
.data_frame(
Parameter = .remove_backticks_from_string(params$Parameter),
p = as.vector(s[, pvcn])
)
}
#' @export
ci.averaging <- function(x, ci = 0.95, component = "conditional", ...) {
component <- insight::validate_argument(component, c("conditional", "full"))
.ci_generic(model = x, ci = ci, dof = Inf, component = component)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.