R/methods_psych.R

Defines functions .get_omega_coefficients_summary .get_omega_variance_summary .get_fa_variance_summary model_parameters.item_omega model_parameters.omega model_parameters.principal

Documented in model_parameters.principal

#' Parameters from PCA, FA, CFA, SEM
#'
#' Format structural models from the **psych** or **FactoMineR** packages. There
#' is a `summary()` method for the returned output from `model_parameters()`, to
#' show further information. See 'Examples'.
#'
#' @param standardize Return standardized parameters (standardized coefficients).
#'   Can be `TRUE` (or `"all"` or `"std.all"`) for standardized
#'   estimates based on both the variances of observed and latent variables;
#'   `"latent"` (or `"std.lv"`) for standardized estimates based
#'   on the variances of the latent variables only; or `"no_exogenous"`
#'   (or `"std.nox"`) for standardized estimates based on both the
#'   variances of observed and latent variables, but not the variances of
#'   exogenous covariates. See `lavaan::standardizedsolution` for details.
#' @param labels A character vector containing labels to be added to the
#'   loadings data. Usually, the question related to the item.
#' @param component What type of links to return. Can be `"all"` or some of
#' `c("regression", "correlation", "loading", "variance", "mean")`.
#' @param ... Arguments passed to or from other methods.
#' @inheritParams principal_components
#' @inheritParams model_parameters.default
#'
#' @note There is also a
#' [`plot()`-method](https://easystats.github.io/see/articles/parameters.html)
#' for `lavaan` models implemented in the
#' [**see**-package](https://easystats.github.io/see/).
#'
#' @details
#'  For the structural models obtained with **psych**, the following indices
#'  are present:
#'
#' - **Complexity** (\cite{Hoffman's, 1978; Pettersson and Turkheimer,
#'    2010}) represents the number of latent components needed to account for
#'    the observed variables. Whereas a perfect simple structure solution has a
#'    complexity of 1 in that each item would only load on one factor, a
#'    solution with evenly distributed items has a complexity greater than 1.
#'
#' - **Uniqueness** represents the variance that is 'unique' to the
#'    variable and not shared with other variables. It is equal to `1 –
#'    communality` (variance that is shared with other variables). A uniqueness
#'    of `0.20` suggests that `20%` or that variable's variance is not shared
#'    with other variables in the overall factor model. The greater 'uniqueness'
#'    the lower the relevance of the variable in the factor model.
#'
#' - **MSA** represents the Kaiser-Meyer-Olkin Measure of Sampling
#'    Adequacy (\cite{Kaiser and Rice, 1974}) for each item. It indicates
#'    whether there is enough data for each factor give reliable results for the
#'    PCA. The value should be > 0.6, and desirable values are > 0.8
#'    (\cite{Tabachnick and Fidell, 2013}).
#'
#' @examplesIf all(insight::check_if_installed(c("psych", "lavaan"), quietly = TRUE))
#' library(parameters)
#' \donttest{
#' # Principal Component Analysis (PCA) ---------
#' data(attitude)
#' pca <- psych::principal(attitude)
#' model_parameters(pca)
#' summary(model_parameters(pca))
#'
#' pca <- psych::principal(attitude, nfactors = 3, rotate = "none")
#' model_parameters(pca, sort = TRUE, threshold = 0.2)
#'
#' principal_components(attitude, n = 3, sort = TRUE, threshold = 0.2)
#'
#'
#' # Exploratory Factor Analysis (EFA) ---------
#' efa <- psych::fa(attitude, nfactors = 3)
#' model_parameters(efa,
#'   threshold = "max", sort = TRUE,
#'   labels = as.character(1:ncol(attitude))
#' )
#'
#'
#' # Omega ---------
#' data(mtcars)
#' omega <- psych::omega(mtcars, nfactors = 3, plot = FALSE)
#' params <- model_parameters(omega)
#' params
#' summary(params)
#' }
#'
#'
#' # lavaan -------------------------------------
#' # Confirmatory Factor Analysis (CFA) ---------
#'
#' data(HolzingerSwineford1939, package = "lavaan")
#' structure <- " visual  =~ x1 + x2 + x3
#'                textual =~ x4 + x5 + x6
#'                speed   =~ x7 + x8 + x9 "
#' model <- lavaan::cfa(structure, data = HolzingerSwineford1939)
#' model_parameters(model)
#' model_parameters(model, standardize = TRUE)
#'
#' # filter parameters
#' model_parameters(
#'   model,
#'   parameters = list(
#'     To = "^(?!visual)",
#'     From = "^(?!(x7|x8))"
#'   )
#' )
#'
#' # Structural Equation Model (SEM) ------------
#'
#' data(PoliticalDemocracy, package = "lavaan")
#' structure <- "
#'   # latent variable definitions
#'     ind60 =~ x1 + x2 + x3
#'     dem60 =~ y1 + a*y2 + b*y3 + c*y4
#'     dem65 =~ y5 + a*y6 + b*y7 + c*y8
#'   # regressions
#'     dem60 ~ ind60
#'     dem65 ~ ind60 + dem60
#'   # residual correlations
#'     y1 ~~ y5
#'     y2 ~~ y4 + y6
#'     y3 ~~ y7
#'     y4 ~~ y8
#'     y6 ~~ y8
#' "
#' model <- lavaan::sem(structure, data = PoliticalDemocracy)
#' model_parameters(model)
#' model_parameters(model, standardize = TRUE)
#'
#' @return A data frame of indices or loadings.
#' @references
#' - Kaiser, H.F. and Rice. J. (1974). Little jiffy, mark iv. Educational and
#' Psychological Measurement, 34(1):111–117
#'
#' - Pettersson, E., and Turkheimer, E. (2010). Item selection, evaluation, and
#' simple structure in personality data. Journal of research in personality,
#' 44(4), 407-420.
#'
#' - Revelle, W. (2016). How To: Use the psych package for Factor Analysis and
#' data reduction.
#'
#' - Tabachnick, B. G., and Fidell, L. S. (2013). Using multivariate statistics
#' (6th ed.). Boston: Pearson Education.
#'
#' - Rosseel Y (2012). lavaan: An R Package for Structural Equation
#'   Modeling. Journal of Statistical Software, 48(2), 1-36.
#'
#' - Merkle EC , Rosseel Y (2018). blavaan: Bayesian Structural Equation
#'   Models via Parameter Expansion. Journal of Statistical Software, 85(4),
#'   1-30. http://www.jstatsoft.org/v85/i04/
#'
#' @export
model_parameters.principal <- function(model,
                                       sort = FALSE,
                                       threshold = NULL,
                                       labels = NULL,
                                       verbose = TRUE,
                                       ...) {
  # n
  n <- model$factors

  # Get summary
  data_summary <- .get_fa_variance_summary(model)

  # Get loadings
  loadings <- as.data.frame(unclass(model$loadings))

  # Format
  loadings <- cbind(data.frame(Variable = row.names(loadings)), loadings)
  row.names(loadings) <- NULL

  # Labels
  if (!is.null(labels)) {
    loadings$Label <- labels
    loadings <- loadings[c("Variable", "Label", names(loadings)[!names(loadings) %in% c("Variable", "Label")])]
    loading_cols <- 3:(n + 2)
  } else {
    loading_cols <- 2:(n + 1)
  }

  # Add information
  loadings$Complexity <- model$complexity
  loadings$Uniqueness <- model$uniquenesses
  loadings$MSA <- attributes(model)$MSA

  # Add attributes
  attr(loadings, "summary") <- data_summary
  attr(loadings, "model") <- model
  attr(loadings, "rotation") <- model$rotation
  attr(loadings, "scores") <- model$scores
  attr(loadings, "additional_arguments") <- list(...)
  attr(loadings, "n") <- n
  attr(loadings, "threshold") <- threshold
  attr(loadings, "sort") <- sort
  attr(loadings, "type") <- model$fn
  attr(loadings, "loadings_columns") <- loading_cols

  # Sorting
  if (isTRUE(sort)) {
    loadings <- .sort_loadings(loadings)
  }

  # Add some more attributes
  attr(loadings, "loadings_long") <- .long_loadings(loadings, threshold = threshold, loadings_columns = loading_cols)
  # here we match the original columns in the data set with the assigned components
  # for each variable, so we know which column in the original data set belongs
  # to which extracted component...
  attr(loadings, "closest_component") <- .closest_component(
    loadings,
    loadings_columns = loading_cols,
    variable_names = rownames(model$loadings)
  )

  # add class-attribute for printing
  if (model$fn == "principal") {
    class(loadings) <- unique(c("parameters_pca", "see_parameters_pca", class(loadings)))
  } else {
    class(loadings) <- unique(c("parameters_efa", "see_parameters_efa", class(loadings)))
  }

  loadings
}

#' @export
model_parameters.fa <- model_parameters.principal

#' @export
model_parameters.fa.ci <- model_parameters.fa


#' @export
model_parameters.omega <- function(model,
                                   sort = FALSE,
                                   threshold = NULL,
                                   labels = NULL,
                                   ...) {
  # n
  n <- model$stats$factors

  # Get summary
  data_summary <- .get_omega_variance_summary(model)

  # Get omega coefficients
  omega_coefficients <- .get_omega_coefficients_summary(model)

  # Get loadings
  loadings <- as.data.frame(unclass(model$schmid$sl))

  # Format
  loadings <- cbind(data.frame(Variable = row.names(loadings)), loadings)
  row.names(loadings) <- NULL

  # Labels
  if (!is.null(labels)) {
    loadings$Label <- labels
    loadings <- loadings[c("Variable", "Label", names(loadings)[!names(loadings) %in% c("Variable", "Label")])]
    loading_cols <- 3:(n + 4)
  } else {
    loading_cols <- 2:(n + 3)
  }

  # Add information
  colnames(loadings)[colnames(loadings) == "com"] <- "Complexity"
  rotation <- model$Call$rotate
  if (is.null(rotation)) {
    rotation <- "oblimin"
  }

  # Add attributes
  attr(loadings, "summary") <- data_summary
  attr(loadings, "omega_coefficients") <- omega_coefficients
  attr(loadings, "model") <- model
  attr(loadings, "rotation") <- rotation
  attr(loadings, "scores") <- model$scores
  attr(loadings, "additional_arguments") <- list(...)
  attr(loadings, "n") <- n
  attr(loadings, "threshold") <- threshold
  attr(loadings, "sort") <- sort
  attr(loadings, "loadings_columns") <- loading_cols

  # Sorting
  if (isTRUE(sort)) {
    loadings <- .sort_loadings(loadings)
  }

  # Add some more attributes
  attr(loadings, "loadings_long") <- .long_loadings(loadings, threshold = threshold, loadings_columns = loading_cols)
  # here we match the original columns in the data set with the assigned components
  # for each variable, so we know which column in the original data set belongs
  # to which extracted component...
  attr(loadings, "closest_component") <- .closest_component(
    loadings,
    loadings_columns = loading_cols,
    variable_names = rownames(model$schmid$sl)
  )

  # add class-attribute for printing
  class(loadings) <- c("parameters_omega", class(loadings))
  loadings
}


#' @export
model_parameters.item_omega <- function(model,
                                        sort = FALSE,
                                        threshold = NULL,
                                        labels = NULL,
                                        ...) {
  x <- attributes(model)$model
  model_parameters(x, sort = sort, threshold = threshold, labels = labels, ...)
}


# helper ------------------------------------------------


.get_fa_variance_summary <- function(model) {
  n <- model$factors
  variance <- as.data.frame(unclass(model$Vaccounted))

  data_summary <- .data_frame(
    Component = names(variance),
    Eigenvalues = model$values[1:n],
    Variance = as.numeric(variance["Proportion Var", ])
  )

  if ("Cumulative Var" %in% row.names(variance)) {
    data_summary$Variance_Cumulative <- as.numeric(variance["Cumulative Var", ])
  } else if (ncol(variance) == 1) {
    data_summary$Variance_Cumulative <- as.numeric(variance["Proportion Var", ])
  } else {
    data_summary$Variance_Cumulative <- NA
  }
  data_summary$Variance_Proportion <- data_summary$Variance / sum(data_summary$Variance)

  data_summary
}


.get_omega_variance_summary <- function(model) {
  # Get summary: Table of Variance
  table_var <- as.data.frame(unclass(model$omega.group))
  table_var$Composite <- rownames(model$omega.group)
  table_var$Total <- table_var$total * 100
  table_var$General <- table_var$general * 100
  table_var$Group <- table_var$group * 100
  table_var[c("Composite", "Total", "General", "Group")]
}


.get_omega_coefficients_summary <- function(model) {
  # Table of omega coefficients
  table_om <- model$omega.group
  colnames(table_om) <- c("Omega_Total", "Omega_Hierarchical", "Omega_Group")
  table_om$Composite <- row.names(table_om)
  row.names(table_om) <- NULL
  table_om[c("Composite", names(table_om)[names(table_om) != "Composite"])]
}

Try the parameters package in your browser

Any scripts or data that you put into this service are public.

parameters documentation built on Aug. 21, 2025, 5:47 p.m.