R/predict_interval.R

Defines functions predict_predint predict_predint.model_fit predict_confint predict_confint.model_fit

Documented in predict_confint.model_fit

#' @keywords internal
#' @rdname other_predict
#' @param level A single numeric value between zero and one for the
#'  interval estimates.
#' @param std_error A single logical for whether the standard error should be
#'  returned (assuming that the model can compute it).
#' @inheritParams predict.model_fit
#' @method predict_confint model_fit
#' @export predict_confint.model_fit
#' @export
predict_confint.model_fit <- function(object, new_data, level = 0.95, std_error = FALSE, ...) {

  check_spec_pred_type(object, "conf_int")

  if (inherits(object$fit, "try-error")) {
    rlang::warn("Model fit failed; cannot make predictions.")
    return(NULL)
  }

  new_data <- prepare_data(object, new_data)

  # preprocess data
  if (!is.null(object$spec$method$pred$conf_int$pre))
    new_data <- object$spec$method$pred$conf_int$pre(new_data, object)

  # Pass some extra arguments to be used in post-processor
  object$spec$method$pred$conf_int$extras <-
    list(level = level, std_error = std_error)
  pred_call <- make_pred_call(object$spec$method$pred$conf_int)

  res <- eval_tidy(pred_call)

  # post-process the predictions
  if (!is.null(object$spec$method$pred$conf_int$post)) {
    res <- object$spec$method$pred$conf_int$post(res, object)
  }

  attr(res, "level") <- level

  res
}

# @export
# @keywords internal
# @rdname other_predict
# @inheritParams predict.model_fit
predict_confint <- function(object, ...)
  UseMethod("predict_confint")

# ------------------------------------------------------------------------------

# @keywords internal
# @rdname other_predict
# @inheritParams predict.model_fit
# @method predict_predint model_fit
# @export predict_predint.model_fit
# @export
predict_predint.model_fit <- function(object, new_data, level = 0.95, std_error = FALSE, ...) {

  check_spec_pred_type(object, "pred_int")

  if (inherits(object$fit, "try-error")) {
    rlang::warn("Model fit failed; cannot make predictions.")
    return(NULL)
  }

  new_data <- prepare_data(object, new_data)

  # preprocess data
  if (!is.null(object$spec$method$pred$pred_int$pre))
    new_data <- object$spec$method$pred$pred_int$pre(new_data, object)

  # create prediction call
  # Pass some extra arguments to be used in post-processor
  object$spec$method$pred$pred_int$extras <-
    list(level = level, std_error = std_error)
  pred_call <- make_pred_call(object$spec$method$pred$pred_int)

  res <- eval_tidy(pred_call)

  # post-process the predictions
  if (!is.null(object$spec$method$pred$pred_int$post)) {
    res <- object$spec$method$pred$pred_int$post(res, object)
  }

  attr(res, "level") <- level

  res
}

# @export
# @keywords internal
# @rdname other_predict
# @inheritParams predict.model_fit
predict_predint <- function(object, ...)
  UseMethod("predict_predint")

Try the parsnip package in your browser

Any scripts or data that you put into this service are public.

parsnip documentation built on July 21, 2021, 5:08 p.m.