Nothing
hpc <- hpc_data[1:150, c(2:5, 8)]
# ------------------------------------------------------------------------------
set.seed(352)
dat <- hpc[order(runif(150)),]
tr_dat <- dat[1:140, ]
te_dat <- dat[141:150, ]
# ------------------------------------------------------------------------------
basic_mod <-
multinom_reg() %>%
set_engine("keras", epochs = 50, verbose = 0)
reg_mod <-
multinom_reg(penalty = 0.1) %>%
set_engine("keras", epochs = 50, verbose = 0)
ctrl <- control_parsnip(verbosity = 0, catch = FALSE)
# ------------------------------------------------------------------------------
test_that('model fitting', {
skip_on_cran()
skip_if_not_installed("keras")
skip_if(!is_tf_ok())
set_tf_seed(257)
expect_no_condition(
fit1 <-
fit_xy(
basic_mod,
control = ctrl,
x = tr_dat[, -5],
y = tr_dat$class
)
)
set_tf_seed(257)
expect_no_condition(
fit2 <-
fit_xy(
basic_mod,
control = ctrl,
x = tr_dat[, -5],
y = tr_dat$class
)
)
expect_equal(
unlist(keras::get_weights(extract_fit_engine(fit1))),
unlist(keras::get_weights(extract_fit_engine(fit2))),
tolerance = .1
)
expect_no_condition(
fit(
basic_mod,
class ~ .,
data = tr_dat,
control = ctrl
)
)
expect_no_condition(
fit1 <-
fit_xy(
reg_mod,
control = ctrl,
x = tr_dat[, -5],
y = tr_dat$class
)
)
expect_no_condition(
fit(
reg_mod,
class ~ .,
data = tr_dat,
control = ctrl
)
)
})
test_that('classification prediction', {
skip_on_cran()
skip_if_not_installed("keras")
skip_if(!is_tf_ok())
library(keras)
set.seed(257)
lr_fit <-
fit_xy(
basic_mod,
control = ctrl,
x = tr_dat[, -5],
y = tr_dat$class
)
keras_raw <-
predict(extract_fit_engine(lr_fit), as.matrix(te_dat[, -5]))
keras_pred <-
tibble::tibble(.pred_class = apply(keras_raw, 1, which.max)) %>%
dplyr::mutate(.pred_class = factor(lr_fit$lvl[.pred_class], levels = lr_fit$lvl))
parsnip_pred <- predict(lr_fit, te_dat[, -5])
expect_equal(as.data.frame(keras_pred), as.data.frame(parsnip_pred))
set.seed(257)
plrfit <-
fit_xy(
reg_mod,
control = ctrl,
x = tr_dat[, -5],
y = tr_dat$class
)
keras_raw <-
predict(extract_fit_engine(plrfit), as.matrix(te_dat[, -5]))
keras_pred <-
tibble::tibble(.pred_class = apply(keras_raw, 1, which.max)) %>%
dplyr::mutate(.pred_class = factor(plrfit$lvl[.pred_class], levels = plrfit$lvl))
parsnip_pred <- predict(plrfit, te_dat[, -5])
expect_equal(as.data.frame(keras_pred), as.data.frame(parsnip_pred))
})
test_that('classification probabilities', {
skip_on_cran()
skip_if_not_installed("keras")
skip_if(!is_tf_ok())
library(keras)
set_tf_seed(257)
lr_fit <-
fit_xy(
basic_mod,
control = ctrl,
x = tr_dat[, -5],
y = tr_dat$class
)
keras_pred <-
predict(extract_fit_engine(lr_fit), as.matrix(te_dat[, -5])) %>%
as_tibble(.name_repair = "minimal") %>%
setNames(paste0(".pred_", lr_fit$lvl))
parsnip_pred <- predict(lr_fit, te_dat[, -5], type = "prob")
expect_equal(as.data.frame(keras_pred), as.data.frame(parsnip_pred))
set_tf_seed(257)
plrfit <-
fit_xy(
reg_mod,
control = ctrl,
x = tr_dat[, -5],
y = tr_dat$class
)
keras_pred <-
predict(extract_fit_engine(plrfit), as.matrix(te_dat[, -5])) %>%
as_tibble(.name_repair = "minimal") %>%
setNames(paste0(".pred_", lr_fit$lvl))
parsnip_pred <- predict(plrfit, te_dat[, -5], type = "prob")
expect_equal(as.data.frame(keras_pred), as.data.frame(parsnip_pred))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.