R/check_outliers.R

Defines functions check_outliers.glmmTMB .influential_obs .check_outliers_lof .check_outliers_optics .check_outliers_ics .check_outliers_mcd .check_outliers_mahalanobis_robust .check_outliers_mahalanobis .check_outliers_pareto .check_outliers_cook .check_outliers_ci .check_outliers_iqr .check_outliers_zscore .check_outliers_thresholds_nowarn .check_outliers_thresholds check_outliers.performance_simres check_outliers.metagen check_outliers.rma check_outliers.fixest_multi check_outliers.gls check_outliers.BFBayesFactor check_outliers.grouped_df .check_outliers.data.frame_method check_outliers.data.frame check_outliers.numeric print.check_outliers_simres plot.check_outliers print.check_outliers_metagen print.check_outliers_metafor print.check_outliers as.numeric.check_outliers as.data.frame.check_outliers check_outliers.default check_outliers.character check_outliers

Documented in check_outliers check_outliers.data.frame check_outliers.default check_outliers.numeric check_outliers.performance_simres

#' @title Outliers detection (check for influential observations)
#' @name check_outliers
#'
#' @description Checks for and locates influential observations (i.e.,
#'   "outliers") via several distance and/or clustering methods. If several
#'   methods are selected, the returned "Outlier" vector will be a composite
#'   outlier score, made of the average of the binary (0 or 1) results of each
#'   method. It represents the probability of each observation of being
#'   classified as an outlier by at least one method. The decision rule used by
#'   default is to classify as outliers observations which composite outlier
#'   score is superior or equal to 0.5 (i.e., that were classified as outliers
#'   by at least half of the methods). See the **Details** section below
#'   for a description of the methods.
#'
#' @param x A model, a data.frame, a `performance_simres` [`simulate_residuals()`]
#' or a `DHARMa` object.
#' @param method The outlier detection method(s). Can be `"all"` or some of
#'   `"cook"`, `"pareto"`, `"zscore"`, `"zscore_robust"`, `"iqr"`, `"ci"`, `"eti"`,
#'   `"hdi"`, `"bci"`, `"mahalanobis"`, `"mahalanobis_robust"`, `"mcd"`, `"ics"`,
#'   `"optics"` or `"lof"`.
#' @param threshold A list containing the threshold values for each method (e.g.
#'   `list('mahalanobis' = 7, 'cook' = 1)`), above which an observation is
#'   considered as outlier. If `NULL`, default values will be used (see
#'   'Details'). If a numeric value is given, it will be used as the threshold
#'   for any of the method run.
#' @param ID Optional, to report an ID column along with the row number.
#' @param type Type of method to test for outliers. Can be one of `"default"`,
#' `"binomial"` or `"bootstrap"`. Only applies when `x` is an object returned
#' by `simulate_residuals()` or of class `DHARMa`. See 'Details' in
#' `?DHARMa::testOutliers` for a detailed description of the types.
#' @param verbose Toggle warnings.
#' @param ... When `method = "ics"`, further arguments in `...` are passed
#' down to [ICSOutlier::ics.outlier()]. When `method = "mahalanobis"`,
#' they are  passed down to [stats::mahalanobis()]. `percentage_central` can
#' be specified when `method = "mcd"`. For objects of class `performance_simres`
#' or `DHARMa`, further arguments are passed down to `DHARMa::testOutliers()`.
#'
#' @inheritParams check_zeroinflation
#' @inheritParams simulate_residuals
#'
#' @return A logical vector of the detected outliers with a nice printing
#'   method: a check (message) on whether outliers were detected or not. The
#'   information on the distance measure and whether or not an observation is
#'   considered as outlier can be recovered with the [as.data.frame]
#'   function. Note that the function will (silently) return a vector of `FALSE`
#'   for non-supported data types such as character strings.
#'
#' @family functions to check model assumptions and and assess model quality
#'
#' @seealso [`see::plot.see_check_outliers()`] for options to customize the plot.
#'
#' @note There is also a
#'   [`plot()`-method](https://easystats.github.io/see/articles/performance.html)
#'   implemented in the
#'   \href{https://easystats.github.io/see/}{\pkg{see}-package}. **Please
#'   note** that the range of the distance-values along the y-axis is re-scaled
#'   to range from 0 to 1.
#'
#' @details Outliers can be defined as particularly influential observations.
#'   Most methods rely on the computation of some distance metric, and the
#'   observations greater than a certain threshold are considered outliers.
#'   Importantly, outliers detection methods are meant to provide information to
#'   consider for the researcher, rather than to be an automatized procedure
#'   which mindless application is a substitute for thinking.
#'
#' An **example sentence** for reporting the usage of the composite method
#' could be:
#'
#' *"Based on a composite outlier score (see the 'check_outliers' function
#' in the 'performance' R package; Lüdecke et al., 2021) obtained via the joint
#' application of multiple outliers detection algorithms (Z-scores, Iglewicz,
#' 1993; Interquartile range (IQR); Mahalanobis distance, Cabana, 2019; Robust
#' Mahalanobis distance, Gnanadesikan and Kettenring, 1972; Minimum Covariance
#' Determinant, Leys et al., 2018; Invariant Coordinate Selection, Archimbaud et
#' al., 2018; OPTICS, Ankerst et al., 1999; Isolation Forest, Liu et al. 2008;
#' and Local Outlier Factor, Breunig et al., 2000), we excluded n participants
#' that were classified as outliers by at least half of the methods used."*
#'
#' @section Model-specific methods:
#'
#'  - **Cook's Distance**:
#'  Among outlier detection methods, Cook's distance and leverage are less
#'  common than the basic Mahalanobis distance, but still used. Cook's distance
#'  estimates the variations in regression coefficients after removing each
#'  observation, one by one (Cook, 1977). Since Cook's distance is in the metric
#'  of an F distribution with p and n-p degrees of freedom, the median point of
#'  the quantile distribution can be used as a cut-off (Bollen, 1985). A common
#'  approximation or heuristic is to use 4 divided by the numbers of
#'  observations, which usually corresponds to a lower threshold (i.e., more
#'  outliers are detected). This only works for frequentist models. For Bayesian
#'  models, see `pareto`.
#'
#' - **Pareto**:
#' The reliability and approximate convergence of Bayesian models can be
#' assessed using the estimates for the shape parameter k of the generalized
#' Pareto distribution. If the estimated tail shape parameter k exceeds 0.5, the
#' user should be warned, although in practice the authors of the **loo**
#' package observed good performance for values of k up to 0.7 (the default
#' threshold used by `performance`).
#'
#' @section Univariate methods:
#'
#'  - **Z-scores** `("zscore", "zscore_robust")`:
#'  The Z-score, or standard score, is a way of describing a data point as
#'  deviance from a central value, in terms of standard deviations from the mean
#'  (`"zscore"`) or, as it is here the case (`"zscore_robust"`) by
#'  default (Iglewicz, 1993), in terms of Median Absolute Deviation (MAD) from
#'  the median (which are robust measures of dispersion and centrality). The
#'  default threshold to classify outliers is 1.959 (`threshold = list("zscore" = 1.959)`),
#'  corresponding to the 2.5% (`qnorm(0.975)`) most extreme observations
#'  (assuming the data is normally distributed). Importantly, the Z-score
#'  method is univariate: it is computed column by column. If a data frame is
#'  passed, the Z-score is calculated for each variable separately, and the
#'  maximum (absolute) Z-score is kept for each observations. Thus, all
#'  observations that are extreme on at least one variable might be detected
#'  as outliers. Thus, this method is not suited for high dimensional data
#'  (with many columns), returning too liberal results (detecting many outliers).
#'
#'  - **IQR** `("iqr")`:
#'  Using the IQR (interquartile range) is a robust method developed by John
#'  Tukey, which often appears in box-and-whisker plots (e.g., in
#'  [ggplot2::geom_boxplot]). The interquartile range is the range between the first
#'  and the third quartiles. Tukey considered as outliers any data point that
#'  fell outside of either 1.5 times (the default threshold is 1.7) the IQR below
#'  the first or above the third quartile. Similar to the Z-score method, this is
#'  a univariate method for outliers detection, returning outliers detected for
#'  at least one column, and might thus not be suited to high dimensional data.
#'  The distance score for the IQR is the absolute deviation from the median of
#'  the upper and lower IQR thresholds. Then, this value is divided by the IQR
#'  threshold, to “standardize” it and facilitate interpretation.
#'
#'  - **CI** `("ci", "eti", "hdi", "bci")`:
#'  Another univariate method is to compute, for each variable, some sort of
#'  "confidence" interval and consider as outliers values lying beyond the edges
#'  of that interval. By default, `"ci"` computes the Equal-Tailed Interval
#'  (`"eti"`), but other types of intervals are available, such as Highest
#'  Density Interval (`"hdi"`) or the Bias Corrected and Accelerated
#'  Interval (`"bci"`). The default threshold is `0.95`, considering
#'  as outliers all observations that are outside the 95% CI on any of the
#'  variable. See [bayestestR::ci()] for more details
#'  about the intervals. The distance score for the CI methods is the absolute
#'  deviation from the median of the upper and lower CI thresholds. Then, this
#'  value is divided by the difference between the upper and lower CI bounds
#'  divided by two, to “standardize” it and facilitate interpretation.
#'
#' @section Multivariate methods:
#'
#' - **Mahalanobis Distance**:
#' Mahalanobis distance (Mahalanobis, 1930) is often used for multivariate
#' outliers detection as this distance takes into account the shape of the
#' observations. The default `threshold` is often arbitrarily set to some
#' deviation (in terms of SD or MAD) from the mean (or median) of the
#' Mahalanobis distance. However, as the Mahalanobis distance can be
#' approximated by a Chi squared distribution (Rousseeuw and Van Zomeren, 1990),
#' we can use the alpha quantile of the chi-square distribution with k degrees
#' of freedom (k being the number of columns). By default, the alpha threshold
#' is set to 0.025 (corresponding to the 2.5\% most extreme observations;
#' Cabana, 2019). This criterion is a natural extension of the median plus or
#' minus a coefficient times the MAD method (Leys et al., 2013).
#'
#' - **Robust Mahalanobis Distance**:
#' A robust version of Mahalanobis distance using an Orthogonalized
#' Gnanadesikan-Kettenring pairwise estimator (Gnanadesikan and Kettenring,
#' 1972). Requires the **bigutilsr** package. See the [bigutilsr::dist_ogk()]
#' function.
#'
#' - **Minimum Covariance Determinant (MCD)**:
#' Another robust version of Mahalanobis. Leys et al. (2018) argue that
#' Mahalanobis Distance is not a robust way to determine outliers, as it uses
#' the means and covariances of all the data - including the outliers - to
#' determine individual difference scores. Minimum Covariance Determinant
#' calculates the mean and covariance matrix based on the most central subset of
#' the data (by default, 66\%), before computing the Mahalanobis Distance. This
#' is deemed to be a more robust method of identifying and removing outliers
#' than regular Mahalanobis distance.
#' This method has a `percentage_central` argument that allows specifying
#' the breakdown point (0.75, the default, is recommended by Leys et al. 2018,
#' but a commonly used alternative is 0.50).
#'
#'  - **Invariant Coordinate Selection (ICS)**:
#'  The outlier are detected using ICS, which by default uses an alpha threshold
#'  of 0.025 (corresponding to the 2.5\% most extreme observations) as a cut-off
#'  value for outliers classification. Refer to the help-file of
#'  [ICSOutlier::ics.outlier()] to get more details about this procedure.
#'  Note that `method = "ics"` requires both **ICS** and **ICSOutlier**
#'  to be installed, and that it takes some time to compute the results. You
#'  can speed up computation time using parallel computing. Set the number of
#'  cores to use with `options(mc.cores = 4)` (for example).
#'
#'  - **OPTICS**:
#'  The Ordering Points To Identify the Clustering Structure (OPTICS) algorithm
#'  (Ankerst et al., 1999) is using similar concepts to DBSCAN (an unsupervised
#'  clustering technique that can be used for outliers detection). The threshold
#'  argument is passed as `minPts`, which corresponds to the minimum size
#'  of a cluster. By default, this size is set at 2 times the number of columns
#'  (Sander et al., 1998). Compared to the other techniques, that will always
#'  detect several outliers (as these are usually defined as a percentage of
#'  extreme values), this algorithm functions in a different manner and won't
#'  always detect outliers. Note that `method = "optics"` requires the
#'  **dbscan** package to be installed, and that it takes some time to compute
#'  the results.
#'
#'  - **Local Outlier Factor**:
#'  Based on a K nearest neighbors algorithm, LOF compares the local density of
#'  a point to the local densities of its neighbors instead of computing a
#'  distance from the center (Breunig et al., 2000). Points that have a
#'  substantially lower density than their neighbors are considered outliers. A
#'  LOF score of approximately 1 indicates that density around the point is
#'  comparable to its neighbors. Scores significantly larger than 1 indicate
#'  outliers. The default threshold of 0.025 will classify as outliers the
#'  observations located at `qnorm(1-0.025) * SD)` of the log-transformed
#'  LOF distance. Requires the **dbscan** package.
#'
#' @section Methods for simulated residuals:
#'
#' The approach for detecting outliers based on simulated residuals differs
#' from the traditional methods and may not be detecting outliers as expected.
#' Literally, this approach compares observed to simulated values. However, we
#' do not know the deviation of the observed data to the model expectation, and
#' thus, the term "outlier" should be taken with a grain of salt. It refers to
#' "simulation outliers". Basically, the comparison tests whether on observed
#' data point is outside the simulated range. It is strongly recommended to read
#' the related documentations in the **DHARMa** package, e.g. `?DHARMa::testOutliers`.
#'
#' @section Threshold specification:
#'
#' Default thresholds are currently specified as follows:
#'
#' ```
#' list(
#'   zscore = stats::qnorm(p = 1 - 0.001 / 2),
#'   zscore_robust = stats::qnorm(p = 1 - 0.001 / 2),
#'   iqr = 1.7,
#'   ci = 1 - 0.001,
#'   eti = 1 - 0.001,
#'   hdi = 1 - 0.001,
#'   bci = 1 - 0.001,
#'   cook = stats::qf(0.5, ncol(x), nrow(x) - ncol(x)),
#'   pareto = 0.7,
#'   mahalanobis = stats::qchisq(p = 1 - 0.001, df = ncol(x)),
#'   mahalanobis_robust = stats::qchisq(p = 1 - 0.001, df = ncol(x)),
#'   mcd = stats::qchisq(p = 1 - 0.001, df = ncol(x)),
#'   ics = 0.001,
#'   optics = 2 * ncol(x),
#'   lof = 0.001
#' )
#' ```
#'
#' @section Meta-analysis models:
#' For meta-analysis models (e.g. objects of class `rma` from the *metafor*
#' package or `metagen` from package *meta*), studies are defined as outliers
#' when their confidence interval lies outside the confidence interval of the
#' pooled effect.
#'
#' @references
#' - Archimbaud, A., Nordhausen, K., and Ruiz-Gazen, A. (2018). ICS for
#' multivariate outlier detection with application to quality control.
#' *Computational Statistics and Data Analysis*, *128*, 184-199.
#' \doi{10.1016/j.csda.2018.06.011}
#'
#' - Gnanadesikan, R., and Kettenring, J. R. (1972). Robust estimates, residuals,
#' and outlier detection with multiresponse data. *Biometrics*, 81-124.
#'
#' - Bollen, K. A., and Jackman, R. W. (1985). Regression diagnostics: An
#' expository treatment of outliers and influential cases. *Sociological Methods
#' and Research*, *13*(4), 510-542.
#'
#' - Cabana, E., Lillo, R. E., and Laniado, H. (2019). Multivariate outlier
#' detection based on a robust Mahalanobis distance with shrinkage estimators.
#' arXiv preprint arXiv:1904.02596.
#'
#' - Cook, R. D. (1977). Detection of influential observation in linear
#' regression. *Technometrics*, *19*(1), 15-18.
#'
#' - Iglewicz, B., and Hoaglin, D. C. (1993). How to detect and handle outliers
#' (Vol. 16). Asq Press.
#'
#' - Leys, C., Klein, O., Dominicy, Y., and Ley, C. (2018). Detecting
#' multivariate outliers: Use a robust variant of Mahalanobis distance. *Journal
#' of Experimental Social Psychology*, 74, 150-156.
#'
#' - Liu, F. T., Ting, K. M., and Zhou, Z. H. (2008, December). Isolation forest.
#' In 2008 Eighth IEEE International Conference on Data Mining (pp. 413-422).
#' IEEE.
#'
#' - Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P., and Makowski, D.
#' (2021). performance: An R package for assessment, comparison and testing of
#' statistical models. *Journal of Open Source Software*, *6*(60), 3139.
#' \doi{10.21105/joss.03139}
#'
#' - Thériault, R., Ben-Shachar, M. S., Patil, I., Lüdecke, D., Wiernik, B. M.,
#' and Makowski, D. (2023). Check your outliers! An introduction to identifying
#' statistical outliers in R with easystats. *Behavior Research Methods*, 1-11.
#' \doi{10.3758/s13428-024-02356-w}
#'
#' - Rousseeuw, P. J., and Van Zomeren, B. C. (1990). Unmasking multivariate
#' outliers and leverage points. *Journal of the American Statistical
#' association*, *85*(411), 633-639.
#'
#' @examples
#' data <- mtcars # Size nrow(data) = 32
#'
#' # For single variables ------------------------------------------------------
#' outliers_list <- check_outliers(data$mpg) # Find outliers
#' outliers_list # Show the row index of the outliers
#' as.numeric(outliers_list) # The object is a binary vector...
#' filtered_data <- data[!outliers_list, ] # And can be used to filter a data frame
#' nrow(filtered_data) # New size, 28 (4 outliers removed)
#'
#' # Find all observations beyond +/- 2 SD
#' check_outliers(data$mpg, method = "zscore", threshold = 2)
#'
#' # For dataframes ------------------------------------------------------
#' check_outliers(data) # It works the same way on data frames
#'
#' # You can also use multiple methods at once
#' outliers_list <- check_outliers(data, method = c(
#'   "mahalanobis",
#'   "iqr",
#'   "zscore"
#' ))
#' outliers_list
#'
#' # Using `as.data.frame()`, we can access more details!
#' outliers_info <- as.data.frame(outliers_list)
#' head(outliers_info)
#' outliers_info$Outlier # Including the probability of being an outlier
#'
#' # And we can be more stringent in our outliers removal process
#' filtered_data <- data[outliers_info$Outlier < 0.1, ]
#'
#' # We can run the function stratified by groups using `{datawizard}` package:
#' group_iris <- datawizard::data_group(iris, "Species")
#' check_outliers(group_iris)
#' # nolint start
#' @examplesIf require("see") && require("bigutilsr") && require("loo") && require("MASS") && require("ICSOutlier") && require("ICS") && require("dbscan")
#' # nolint end
#' \donttest{
#' # You can also run all the methods
#' check_outliers(data, method = "all", verbose = FALSE)
#'
#' # For statistical models ---------------------------------------------
#' # select only mpg and disp (continuous)
#' mt1 <- mtcars[, c(1, 3, 4)]
#' # create some fake outliers and attach outliers to main df
#' mt2 <- rbind(mt1, data.frame(
#'   mpg = c(37, 40), disp = c(300, 400),
#'   hp = c(110, 120)
#' ))
#' # fit model with outliers
#' model <- lm(disp ~ mpg + hp, data = mt2)
#'
#' outliers_list <- check_outliers(model)
#' plot(outliers_list)
#'
#' insight::get_data(model)[outliers_list, ] # Show outliers data
#' }
#' @export
check_outliers <- function(x, ...) {
  UseMethod("check_outliers")
}

#' @export
check_outliers.character <- function(x, ...) {
  rep(0, length(x))
}

# default ---------------------

#' @rdname check_outliers
#' @export
check_outliers.default <- function(x,
                                   method = c("cook", "pareto"),
                                   threshold = NULL,
                                   ID = NULL,
                                   verbose = TRUE,
                                   ...) {
  # Check args
  if (all(method == "all")) {
    method <- c(
      "zscore_robust",
      "iqr",
      "ci",
      "cook",
      "pareto",
      "mahalanobis",
      "mahalanobis_robust",
      "mcd",
      "ics",
      "optics",
      "lof"
    )
  }

  method <- match.arg(
    method,
    c(
      "zscore",
      "zscore_robust",
      "iqr",
      "ci",
      "hdi",
      "eti",
      "bci",
      "cook",
      "pareto",
      "mahalanobis",
      "mahalanobis_robust",
      "mcd",
      "ics",
      "optics",
      "lof"
    ),
    several.ok = TRUE
  )

  # Get data
  my_data <- insight::get_data(x, verbose = FALSE)

  # sanity check for date, POSIXt and difftime variables
  if (any(vapply(my_data, inherits, FUN.VALUE = logical(1), what = c("Date", "POSIXt", "difftime"))) && verbose) {
    insight::format_alert(
      paste(
        "Date variables are not supported for outliers detection. These will be ignored.",
        "Make sure any date variables are converted to numeric or factor {.b before} fitting the model."
      )
    )
  }

  # Remove non-numerics
  my_data <- datawizard::data_select(my_data, select = is.numeric, verbose = FALSE)

  # check if any data left
  if (is.null(my_data) || ncol(my_data) == 0) {
    insight::format_error("No numeric variables found. No data to check for outliers.")
  }

  # Thresholds
  if (is.null(threshold)) {
    thresholds <- .check_outliers_thresholds(my_data)
  } else if (is.list(threshold)) {
    thresholds <- .check_outliers_thresholds(my_data)
    thresholds[names(threshold)] <- threshold[names(threshold)]
  } else {
    insight::format_error(
      paste(
        "The `threshold` argument must be NULL (for default values) or a list containing",
        "threshold values for desired methods (e.g., `list('mahalanobis' = 7)`)."
      )
    )
  }

  if (!missing(ID) && verbose) {
    insight::format_warning(paste0("ID argument not supported for model objects of class `", class(x)[1], "`."))
  }

  # Others
  if (all(method %in% c("cook", "pareto"))) {
    my_df <- data.frame(Row = seq_len(nrow(as.data.frame(my_data))))
    outlier_count <- list()
    outlier_var <- list()
  } else {
    out <- check_outliers(my_data, method, threshold)
    outlier_var <- attributes(out)$outlier_var
    outlier_count <- attributes(out)$outlier_count
    my_df <- attributes(out)$data
    my_df <- my_df[names(my_df) != "Outlier"]
  }

  # Cook
  if ("cook" %in% method && !insight::model_info(x)$is_bayesian && !inherits(x, "bife")) {
    data_cook <- .check_outliers_cook(
      x,
      threshold = thresholds$cook
    )$data_cook

    my_df <- datawizard::data_merge(list(my_df, data_cook),
      join = "full",
      by = "Row"
    )

    count.table <- datawizard::data_filter(
      data_cook, "Outlier_Cook > 0.5"
    )

    count.table <- datawizard::data_remove(
      count.table, "Cook",
      regex = TRUE, as_data_frame = TRUE
    )

    if (nrow(count.table) >= 1) {
      count.table$n_Cook <- "(Multivariate)"
    }

    outlier_count$cook <- count.table

    if (all(method %in% c("cook", "pareto"))) {
      outlier_count$all <- count.table
    } else {
      outlier_count$all <- datawizard::data_merge(
        list(outlier_count$all, count.table),
        join = "full",
        by = "Row"
      )
    }
  } else {
    method <- method[method != "cook"]
  }

  # Pareto
  if ("pareto" %in% method && insight::model_info(x)$is_bayesian) {
    data_pareto <- .check_outliers_pareto(
      x,
      threshold = thresholds$pareto
    )$data_pareto

    my_df <- datawizard::data_merge(list(my_df, data_pareto),
      join = "full",
      by = "Row"
    )

    count.table <- datawizard::data_filter(
      data_pareto, "Outlier_Pareto > 0.5"
    )

    count.table <- datawizard::data_remove(
      count.table, "Pareto",
      regex = TRUE, as_data_frame = TRUE
    )

    if (nrow(count.table) >= 1) {
      count.table$n_Pareto <- "(Multivariate)"
    }

    outlier_count$pareto <- count.table

    if (all(method %in% c("cook", "pareto"))) {
      outlier_count$all <- count.table
    } else {
      outlier_count$all <- datawizard::data_merge(
        list(outlier_count$all, count.table),
        join = "full",
        by = "Row"
      )
    }
  } else {
    method <- method[method != "pareto"]
  }

  outlier_count$all <- datawizard::convert_na_to(outlier_count$all,
    replace_num = 0,
    replace_char = "0",
    replace_fac = 0
  )

  num.df <- outlier_count$all[!names(outlier_count$all) %in% c("Row", ID)]
  if (isTRUE(nrow(num.df) > 0)) {
    num.df <- datawizard::recode_values(
      num.df,
      recode = list(`2` = "(Multivariate)")
    )
    num.df <- as.data.frame(lapply(num.df, as.numeric))

    outlier_count$all$max <- apply(num.df, 1, max)
    outlier_count$all <- datawizard::data_filter(
      outlier_count$all,
      max >= 2
    )
    outlier_count$all <- datawizard::data_remove(
      outlier_count$all,
      "max"
    )
  }
  row.names(outlier_count$all) <- NULL

  thresholds <- thresholds[names(thresholds) %in% method]

  # Composite outlier score
  my_df$Outlier <- rowMeans(my_df[grepl("Outlier_", names(my_df), fixed = TRUE)])
  my_df <- my_df[c(names(my_df)[names(my_df) != "Outlier"], "Outlier")]

  # Out
  outlier <- my_df$Outlier > 0.5

  # Attributes
  class(outlier) <- c("check_outliers", "see_check_outliers", class(outlier))
  attr(outlier, "data") <- my_df
  attr(outlier, "threshold") <- thresholds
  attr(outlier, "method") <- method
  attr(outlier, "text_size") <- 3
  attr(outlier, "influential_obs") <- .influential_obs(x, threshold = unlist(thresholds))
  attr(outlier, "variables") <- "(Whole model)"
  attr(outlier, "raw_data") <- my_data
  attr(outlier, "outlier_var") <- outlier_var
  attr(outlier, "outlier_count") <- outlier_count

  outlier
}



# Methods -----------------------------------------------------------------

#' @export
as.data.frame.check_outliers <- function(x, ...) {
  attributes(x)$data
}

#' @export
as.numeric.check_outliers <- function(x, ...) {
  attributes(x)$data$Outlier
}

#' @export
print.check_outliers <- function(x, ...) {
  outliers <- which(x)

  method <- attr(x, "method")

  round_to_last_digit <- function(x, n = 3) {
    max(abs(round(x, n)), abs(signif(x, 1))) * sign(x)
  }

  thresholds <- lapply(attr(x, "threshold"), round_to_last_digit, 3)

  method.thresholds <- data.frame(
    method = method,
    thresholds = unlist(thresholds)
  )
  method.thresholds <- paste0(method.thresholds$method, " (",
    method.thresholds$thresholds, ")",
    collapse = ", "
  )

  method.univariate <- c(
    "zscore", "zscore_robust", "iqr", "ci",
    "eti", "hdi", "bci"
  )

  vars <- toString(attr(x, "variables"))
  vars.outliers <- attr(x, "outlier_var")

  var.plural <- ifelse(length(attr(x, "variables")) > 1,
    "variables", "variable"
  )
  method.plural <- ifelse(length(thresholds) > 1,
    "methods and thresholds",
    "method and threshold"
  )
  long_dash <- paste0("\n", strrep("-", 77), "\n")
  if (length(outliers) > 1) {
    outlier.plural <- "outliers"
    case.plural <- "cases"
  } else {
    outlier.plural <- "outlier"
    case.plural <- "case"
  }

  if (length(outliers) >= 1) {
    outlier.count <- attr(x, "outlier_count")
    o <- toString(outliers)
    insight::print_color(insight::format_message(
      sprintf(
        "%i %s detected: %s %s.", length(outliers),
        outlier.plural, case.plural, o
      ),
      sprintf(
        "- Based on the following %s: %s.",
        method.plural, method.thresholds
      ),
      sprintf("- For %s: %s.\n", var.plural, vars),
      indent = ""
    ), color = "yellow")

    if (length(method) > 1) {
      insight::print_color(
        c(
          "\nNote: Outliers were classified as such by",
          "at least half of the selected methods. \n"
        ), "yellow"
      )
    }

    if ((isTRUE(nrow(outlier.count$all) > 0) || isTRUE(attributes(x)$grouped)) &&
      (length(method) > 1 || all(method %in% method.univariate))) {
      cat(long_dash, insight::format_message(
        "\nThe following observations were considered outliers for two or more",
        "variables by at least one of the selected methods:\n\n"
      ))
      ifelse(isTRUE(attributes(x)$grouped),
        print(lapply(outlier.count, function(x) x$all)),
        print(outlier.count$all)
      )
    }

    if (length(method) == 1 && all(method %in% method.univariate)) {
      cat(long_dash, "Outliers per variable (", method,
        "): \n\n",
        sep = ""
      )
      ifelse(isTRUE(attributes(x)$grouped),
        print(vars.outliers),
        print(vars.outliers[[1]])
      )
    }
  } else {
    insight::print_color(
      sprintf("OK: No outliers detected.
- Based on the following %s: %s.
- For %s: %s\n\n", method.plural, method.thresholds, var.plural, vars),
      "green"
    )
  }
  invisible(x)
}

#' @export
print.check_outliers_metafor <- function(x, ...) {
  outliers <- which(x)

  round_to_last_digit <- function(x, n = 3) {
    max(abs(round(x, n)), abs(signif(x, 1))) * sign(x)
  }

  thresholds <- lapply(attr(x, "threshold"), round_to_last_digit, 3)
  studies <- attr(x, "outlier_var")

  if (length(outliers) > 1) {
    outlier.plural <- "outliers"
    case.plural <- "studies"
  } else {
    outlier.plural <- "outlier"
    case.plural <- "study"
  }

  if (length(outliers) >= 1) {
    if (all(as.character(studies) == as.character(outliers))) {
      o <- datawizard::text_concatenate(outliers)
    } else {
      o <- datawizard::text_concatenate(paste0(outliers, " (", studies, ")"))
    }
    insight::print_color(insight::format_message(
      sprintf("%i %s detected: %s %s.\n", length(outliers), outlier.plural, case.plural, o)
    ), "yellow")
  } else {
    insight::print_color("OK: No outliers detected.\n", "green")
  }
  invisible(x)
}

#' @export
print.check_outliers_metagen <- function(x, ...) {
  outliers_fixed <- which(x$fixed)
  outliers_random <- which(x$random)

  studies <- attr(x, "studies")

  if (length(outliers_fixed) > 1) {
    outlier.plural <- "outliers"
    case.plural <- "studies"
  } else {
    outlier.plural <- "outlier"
    case.plural <- "study"
  }

  if (length(outliers_fixed) >= 1) {
    if (all(as.character(studies[outliers_fixed]) == as.character(outliers_fixed))) {
      o <- datawizard::text_concatenate(outliers_fixed)
    } else {
      o <- datawizard::text_concatenate(paste0(outliers_fixed, " (", studies[outliers_fixed], ")"))
    }
    insight::print_color(insight::format_message(
      sprintf("- %i %s in fixed effects detected: %s %s.\n", length(outliers_fixed), outlier.plural, case.plural, o)
    ), "yellow")
  }


  if (length(outliers_random) > 1) {
    outlier.plural <- "outliers"
    case.plural <- "cases"
  } else {
    outlier.plural <- "outlier"
    case.plural <- "case"
  }

  if (length(outliers_random) >= 1) {
    if (all(as.character(studies[outliers_random]) == as.character(outliers_random))) {
      o <- datawizard::text_concatenate(outliers_random)
    } else {
      o <- datawizard::text_concatenate(paste0(outliers_random, " (", studies[outliers_random], ")"))
    }
    if (length(outliers_fixed) >= 1) {
      cat("\n")
    }
    insight::print_color(insight::format_message(
      sprintf("- %i %s in random effects detected: %s %s.\n", length(outliers_random), outlier.plural, case.plural, o)
    ), "yellow")
  }

  if (!length(outliers_random) && !length(outliers_fixed)) {
    insight::print_color("OK: No outliers detected.\n", "green")
  }
  invisible(x)
}

#' @export
plot.check_outliers <- function(x, ...) {
  insight::check_if_installed("see", "to plot outliers")
  NextMethod()
}

#' @export
print.check_outliers_simres <- function(x, digits = 2, ...) {
  result <- paste0(
    insight::format_value(100 * x$Expected, digits = digits, ...),
    "%, ",
    insight::format_ci(100 * x$CI_low, 100 * x$CI_high, digits = digits, ...)
  )
  insight::print_color("# Outliers detection\n\n", "blue")
  cat(sprintf("  Proportion of observed outliers: %.*f%%\n", digits, 100 * x$Coefficient))
  cat(sprintf("  Proportion of expected outliers: %s\n\n", result))

  p_string <- paste0(" (", insight::format_p(x$p_value), ")")

  if (x$p_value < 0.05) {
    message("Outliers were detected", p_string, ".")
  } else {
    message("No outliers were detected", p_string, ".")
  }

  invisible(x)
}



# other classes -------------------------

#' @rdname check_outliers
#' @export
check_outliers.numeric <- function(x,
                                   method = "zscore_robust",
                                   threshold = NULL,
                                   ...) {
  x <- as.data.frame(x)
  names(x) <- datawizard::text_remove(sys.call()[2], "()")
  check_outliers(x,
    method = method,
    threshold = threshold,
    ...
  )
}



#' @rdname check_outliers
#' @export
check_outliers.data.frame <- function(x,
                                      method = "mahalanobis",
                                      threshold = NULL,
                                      ID = NULL,
                                      ...) {
  # Preserve ID column if desired
  ID.names <- switch(!is.null(ID),
    x[ID]
  )

  # Remove non-numerics
  my_data <- x
  x <- x[, vapply(x, is.numeric, logical(1)), drop = FALSE]

  # Check args
  if (all(method == "all")) {
    method <- c(
      "zscore_robust", "iqr", "ci", "cook", "pareto", "mahalanobis",
      "mahalanobis_robust", "mcd", "ics", "optics", "lof"
    )
  }
  method <- match.arg(method, c(
    "zscore", "zscore_robust", "iqr", "ci", "hdi",
    "eti", "bci", "cook", "pareto", "mahalanobis",
    "mahalanobis_robust", "mcd", "ics", "optics",
    "lof"
  ), several.ok = TRUE)

  # Thresholds
  if (is.null(threshold)) {
    thresholds <- .check_outliers_thresholds(x)
  } else if (is.list(threshold)) {
    thresholds <- .check_outliers_thresholds(x)
    thresholds[names(threshold)] <- threshold[names(threshold)]
  } else if (is.numeric(threshold)) {
    thresholds <- .check_outliers_thresholds(x)
    thresholds <- lapply(thresholds, function(x) threshold)
  } else {
    insight::format_error(
      paste(
        "The `threshold` argument must be NULL (for default values) or a list containing",
        "threshold values for desired methods (e.g., `list('mahalanobis' = 7)`)."
      )
    )
  }

  thresholds <- thresholds[names(thresholds) %in% method]

  out.meta <- .check_outliers.data.frame_method(x, method, thresholds, ID, ID.names, ...)
  out <- out.meta$out
  outlier_count <- out.meta$outlier_count
  outlier_var <- out.meta$outlier_var

  # Combine outlier data
  my_df <- out[vapply(out, is.data.frame, logical(1))]
  if (length(my_df) > 1 && !is.null(ID)) {
    my_df <- datawizard::data_merge(my_df, by = c("Row", ID))
  } else if (length(my_df) > 1) {
    my_df <- datawizard::data_merge(my_df, by = "Row")
  } else {
    my_df <- my_df[[1]]
  }

  # Composite outlier score
  my_df$Outlier <- rowMeans(my_df[grepl("Outlier_", names(my_df), fixed = TRUE)])

  # Out
  outlier <- my_df$Outlier > 0.5

  # Combine outlier frequency table
  if (length(outlier_count) > 1 && !is.null(ID)) {
    outlier_count$all <- datawizard::data_merge(outlier_count,
      join = "full",
      by = c("Row", ID)
    )
  } else if (length(outlier_count) > 1) {
    outlier_count$all <- datawizard::data_merge(outlier_count,
      join = "full",
      by = "Row"
    )
  } else if (length(outlier_count) == 1) {
    outlier_count$all <- outlier_count[[1]]
  } else {
    outlier_count$all <- data.frame()
  }
  outlier_count$all <- datawizard::convert_na_to(outlier_count$all,
    replace_num = 0,
    replace_char = "0",
    replace_fac = 0
  )

  outlier_count <- lapply(outlier_count, function(x) {
    num.df <- x[!names(x) %in% c("Row", ID)]
    if (isTRUE(nrow(num.df) >= 1)) {
      num.df <- datawizard::recode_values(
        num.df,
        recode = list(`2` = "(Multivariate)")
      )
      num.df <- as.data.frame(lapply(num.df, as.numeric))
      x$max <- apply(num.df, 1, max)
      x <- datawizard::data_filter(x, max >= 2)
      x <- datawizard::data_remove(x, "max")
    }
  })

  row.names(outlier_count$all) <- NULL

  # Attributes
  class(outlier) <- c("check_outliers", "see_check_outliers", class(outlier))
  attr(outlier, "data") <- my_df
  attr(outlier, "threshold") <- thresholds
  attr(outlier, "method") <- method
  attr(outlier, "text_size") <- 3
  attr(outlier, "variables") <- names(x)
  attr(outlier, "raw_data") <- my_data
  attr(outlier, "outlier_var") <- outlier_var
  attr(outlier, "outlier_count") <- outlier_count
  outlier
}

.check_outliers.data.frame_method <- function(x, method, thresholds, ID, ID.names, ...) {
  # Clean up per-variable list of outliers
  process_outlier_list <- function(outlier.list, Outlier_method) {
    outlier.list <- lapply(outlier.list, "[[", 1)
    outlier.list <- lapply(outlier.list, function(x) {
      x[x[[Outlier_method]] >= 0.5, ]
    })
    outlier.list <- outlier.list[vapply(outlier.list, nrow, numeric(1)) > 0]
    outlier.list <- lapply(outlier.list, datawizard::data_remove,
      Outlier_method,
      as_data_frame = TRUE
    )
    outlier.list
  }

  # Count table of repeated outliers (for several variables)
  count_outlier_table <- function(outlier.list) {
    count.table <- do.call(rbind, outlier.list)
    name.method <- grep("Distance_", names(count.table), value = TRUE, fixed = TRUE)
    name.method <- paste0("n_", gsub("Distance_", "", name.method, fixed = TRUE))
    if (isTRUE(nrow(count.table) > 0)) {
      count.values <- rle(sort(count.table$Row))
      count.table <- data.frame(Row = count.values$values)
      if (!is.null(ID)) {
        count.table[ID] <- ID.names[count.table$Row, ]
      }
      count.table <- cbind(count.table, val = count.values$lengths)
      names(count.table)[names(count.table) == "val"] <- name.method
      count.table <- count.table[order(-count.table[[name.method]]), ]
    }
    count.table
  }

  # Preparation
  out <- list()
  outlier_var <- list()
  outlier_count <- list()

  # Z-score
  if ("zscore" %in% method) {
    out <- c(out, .check_outliers_zscore(
      x,
      threshold = thresholds$zscore,
      robust = FALSE,
      method = "max",
      ID.names = ID.names
    ))

    # Outliers per variable
    zscore.var <- lapply(
      x,
      .check_outliers_zscore,
      threshold = thresholds$zscore,
      robust = FALSE,
      method = "max",
      ID.names = ID.names
    )

    outlier_var$zscore <- process_outlier_list(zscore.var, "Outlier_Zscore")
    outlier_count$zscore <- count_outlier_table(outlier_var$zscore)
  }

  if ("zscore_robust" %in% method) {
    out <- c(out, .check_outliers_zscore(
      x,
      threshold = thresholds$zscore_robust,
      robust = TRUE,
      method = "max",
      ID.names = ID.names
    ))

    # Outliers per variable
    zscore_robust.var <- lapply(x, .check_outliers_zscore,
      threshold = thresholds$zscore_robust,
      robust = TRUE, method = "max", ID.names = ID.names
    )

    outlier_var$zscore_robust <- process_outlier_list(
      zscore_robust.var, "Outlier_Zscore_robust"
    )
    outlier_count$zscore_robust <- count_outlier_table(
      outlier_var$zscore_robust
    )
  }

  # IQR
  if ("iqr" %in% method) {
    out <- c(out, .check_outliers_iqr(
      x,
      threshold = thresholds$iqr,
      method = "tukey",
      ID.names = ID.names
    ))

    # Outliers per variable
    iqr.var <- lapply(x, function(x) {
      y <- as.data.frame(x)
      .check_outliers_iqr(
        y,
        threshold = thresholds$iqr,
        method = "tukey",
        ID.names = ID.names
      )
    })

    outlier_var$iqr <- process_outlier_list(iqr.var, "Outlier_IQR")
    outlier_count$iqr <- count_outlier_table(outlier_var$iqr)
  }

  # CI
  if (any(c("ci", "hdi", "eti", "bci") %in% method)) {
    for (i in method[method %in% c("ci", "hdi", "eti", "bci")]) {
      out <- c(out, .check_outliers_ci(
        x,
        threshold = thresholds[i],
        method = i,
        ID.names = ID.names
      ))

      # Outliers per variable
      loop.var <- lapply(x, function(x) {
        y <- as.data.frame(x)
        .check_outliers_ci(
          y,
          threshold = thresholds[i],
          method = i,
          ID.names = ID.names
        )
      })

      outlier_var[[i]] <- process_outlier_list(
        loop.var, paste0("Outlier_", i)
      )
      outlier_count[[i]] <- count_outlier_table(outlier_var[[i]])
    }
  }

  # Mahalanobis
  if ("mahalanobis" %in% method) {
    out <- c(out, .check_outliers_mahalanobis(
      x,
      threshold = thresholds$mahalanobis,
      ID.names = ID.names,
      ...
    ))

    count.table <- datawizard::data_filter(
      out$data_mahalanobis, "Outlier_Mahalanobis > 0.5"
    )

    count.table <- datawizard::data_remove(
      count.table, "Mahalanobis",
      regex = TRUE, as_data_frame = TRUE
    )

    if (nrow(count.table) >= 1) {
      count.table$n_Mahalanobis <- "(Multivariate)"
    }

    outlier_count$mahalanobis <- count.table
  }

  # Robust Mahalanobis
  if ("mahalanobis_robust" %in% method) {
    out <- c(out, .check_outliers_mahalanobis_robust(
      x,
      threshold = thresholds$mahalanobis_robust,
      ID.names = ID.names
    ))

    count.table <- datawizard::data_filter(
      out$data_mahalanobis_robust, "Outlier_Mahalanobis_robust > 0.5"
    )

    count.table <- datawizard::data_remove(
      count.table, "Mahalanobis",
      regex = TRUE, as_data_frame = TRUE
    )

    if (nrow(count.table) >= 1) {
      count.table$n_Mahalanobis_robust <- "(Multivariate)"
    }

    outlier_count$mahalanobis_robust <- count.table
  }

  # MCD
  if ("mcd" %in% method) {
    out <- c(out, .check_outliers_mcd(
      x,
      threshold = thresholds$mcd,
      ID.names = ID.names,
      ...
    ))

    count.table <- datawizard::data_filter(
      out$data_mcd, "Outlier_MCD > 0.5"
    )

    count.table <- datawizard::data_remove(
      count.table, "MCD",
      regex = TRUE, as_data_frame = TRUE
    )

    if (nrow(count.table) >= 1) {
      count.table$n_MCD <- "(Multivariate)"
    }

    outlier_count$mcd <- count.table
  }

  # ICS
  if ("ics" %in% method) {
    out <- c(out, .check_outliers_ics(
      x,
      threshold = thresholds$ics,
      ID.names = ID.names
    ))

    # make sure we have valid results
    if (!is.null(out)) {
      count.table <- datawizard::data_filter(
        out$data_ics, "Outlier_ICS > 0.5"
      )

      count.table <- datawizard::data_remove(
        count.table, "ICS",
        regex = TRUE, as_data_frame = TRUE
      )

      if (nrow(count.table) >= 1) {
        count.table$n_ICS <- "(Multivariate)"
      }

      outlier_count$ics <- count.table
    }
  }

  # OPTICS
  if ("optics" %in% method) {
    out <- c(out, .check_outliers_optics(
      x,
      threshold = thresholds$optics,
      ID.names = ID.names
    ))

    count.table <- datawizard::data_filter(
      out$data_optics, "Outlier_OPTICS > 0.5"
    )

    count.table <- datawizard::data_remove(
      count.table, "OPTICS",
      regex = TRUE, as_data_frame = TRUE
    )

    if (nrow(count.table) >= 1) {
      count.table$n_OPTICS <- "(Multivariate)"
    }

    outlier_count$optics <- count.table
  }

  # Isolation Forest
  # if ("iforest" %in% method) {
  #   out <- c(out, .check_outliers_iforest(x, threshold = thresholds$iforest))
  # }

  # Local Outlier Factor
  if ("lof" %in% method) {
    out <- c(out, .check_outliers_lof(
      x,
      threshold = thresholds$lof,
      ID.names = ID.names
    ))

    count.table <- datawizard::data_filter(
      out$data_lof, "Outlier_LOF > 0.5"
    )

    count.table <- datawizard::data_remove(
      count.table, "LOF",
      regex = TRUE, as_data_frame = TRUE
    )

    if (nrow(count.table) >= 1) {
      count.table$n_LOF <- "(Multivariate)"
    }

    outlier_count$lof <- count.table
  }
  out.meta <- list(out = out, outlier_var = outlier_var, outlier_count = outlier_count)
  out.meta
}

#' @export
check_outliers.grouped_df <- function(x,
                                      method = "mahalanobis",
                                      threshold = NULL,
                                      ID = NULL,
                                      ...) {
  info <- attributes(x)

  # poorman < 0.8.0?
  if ("indices" %in% names(info)) {
    grps <- lapply(attr(x, "indices", exact = TRUE), function(x) x + 1)
  } else {
    grps <- attr(x, "groups", exact = TRUE)[[".rows"]]
  }

  # Initialize elements
  my_data <- data.frame()
  out <- NULL
  thresholds <- list()
  outlier_var <- list()
  outlier_count <- list()

  # Loop through groups
  for (i in seq_along(grps)) {
    rows <- grps[[i]]
    outliers_subset <- check_outliers(
      as.data.frame(x[rows, ]),
      method = method,
      threshold = threshold,
      ID = ID,
      ...
    )
    my_data <- rbind(my_data, as.data.frame(outliers_subset))
    out <- c(out, outliers_subset)
    thresholds[[paste0("group_", i)]] <- attributes(outliers_subset)$threshold
    outlier_var[[i]] <- lapply(
      attributes(outliers_subset)$outlier_var, lapply, function(y) {
        y$Row <- rows[which(seq_along(rows) %in% y$Row)]
        y
      }
    )
    outlier_count[[i]] <- lapply(
      attributes(outliers_subset)$outlier_count, function(y) {
        y$Row <- rows[which(seq_along(rows) %in% y$Row)]
        y
      }
    )
  }

  # Add compatibility between dplyr and poorman
  info$groups$.rows <- lapply(info$groups$.rows, as.numeric)

  outlier_var <- stats::setNames(outlier_var, info$groups[[1]])
  outlier_count <- stats::setNames(outlier_count, info$groups[[1]])

  groups <- lapply(seq_along(info$groups$.rows), function(x) {
    info$groups$.rows[[x]] <- rep(
      info$groups[[1]][x],
      length(info$groups$.rows[[x]])
    )
    info$groups$.rows[[x]] <- as.data.frame(info$groups$.rows[[x]])
  })

  my_data[names(info$groups)[1]] <- do.call(rbind, groups)
  my_data <- datawizard::data_relocate(
    my_data,
    select = names(info$groups)[1],
    after = "Row"
  )
  my_data$Row <- seq_len(nrow(my_data))

  class(out) <- c("check_outliers", "see_check_outliers", class(out))
  attr(out, "data") <- my_data
  attr(out, "method") <- method
  attr(out, "threshold") <- thresholds[[1]]
  attr(out, "text_size") <- 3
  attr(out, "variables") <- names(x[, vapply(x, is.numeric, logical(1)), drop = FALSE])
  attr(out, "raw_data") <- x
  attr(out, "outlier_var") <- outlier_var
  attr(out, "outlier_count") <- outlier_count
  attr(out, "grouped") <- TRUE
  out
}

#' @export
check_outliers.BFBayesFactor <- function(x,
                                         ID = NULL,
                                         ...) {
  if (!insight::is_model(x)) {
    insight::format_error("Collinearity only applicable to regression models.")
  }

  if (!missing(ID)) {
    insight::format_warning(paste0("ID argument not supported for objects of class `", class(x)[1], "`."))
  }

  d <- insight::get_predictors(x)
  d[[insight::find_response(x)]] <- insight::get_response(x)

  check_outliers(d, ID = ID, ...)
}



#' @export
check_outliers.gls <- function(x,
                               method = "pareto",
                               threshold = NULL,
                               ID = NULL,
                               ...) {
  if (!missing(ID)) {
    insight::format_warning(
      paste0("ID argument not supported for objects of class `", class(x)[1], "`.")
    )
  }

  valid_methods <- c("zscore_robust", "iqr", "ci", "pareto", "optics")

  if (all(method == "all")) {
    method <- valid_methods
  }

  if (!all(method %in% valid_methods)) {
    method <- "pareto"
  }

  check_outliers.default(x, method = method, threshold = threshold, ...)
}

#' @export
check_outliers.lme <- check_outliers.gls

#' @export
check_outliers.fixest <- check_outliers.gls

#' @export
check_outliers.fixest_multi <- function(x,
                                        method = "pareto",
                                        threshold = NULL,
                                        ID = NULL,
                                        ...) {
  lapply(x, check_outliers.fixest)
}

#' @export
check_outliers.geeglm <- check_outliers.gls


#' @export
check_outliers.rma <- function(x, ...) {
  ## TODO Check whether we can enable CI argument
  # but we need to find out at which CI-level the overall effect interval was estimated
  ci <- 0.95
  thresholds <- c(x$ci.lb, x$ci.ub)
  lower_bounds <- as.numeric(x$yi - stats::qnorm((1 + ci) / 2) * sqrt(x$vi))
  upper_bounds <- as.numeric(x$yi + stats::qnorm((1 + ci) / 2) * sqrt(x$vi))

  # which study's CI-range is not covered by/does not overlap with overall CI?
  outlier <- upper_bounds < thresholds[1] | lower_bounds > thresholds[2]

  d <- data.frame(
    Row = seq_along(x$yi),
    Outlier = as.numeric(outlier)
  )

  # Attributes
  class(outlier) <- c("check_outliers_metafor", class(outlier))
  attr(outlier, "data") <- d
  attr(outlier, "threshold") <- thresholds
  attr(outlier, "text_size") <- 3
  attr(outlier, "outlier_var") <- x$slab[outlier]
  attr(outlier, "outlier_count") <- sum(outlier)

  outlier
}

#' @export
check_outliers.rma.uni <- check_outliers.rma

#' @export
check_outliers.metagen <- function(x, ...) {
  ci <- 0.95
  thresholds_fixed <- c(x$lower.fixed, x$upper.fixed)
  thresholds_random <- c(x$lower.random, x$upper.random)
  lower_bounds <- as.numeric(x$TE - stats::qnorm((1 + ci) / 2) * x$seTE)
  upper_bounds <- as.numeric(x$TE + stats::qnorm((1 + ci) / 2) * x$seTE)

  # which study's CI-range is not covered by/does not overlap with overall CI?
  outlier <- list(
    fixed = upper_bounds < thresholds_fixed[1] | lower_bounds > thresholds_fixed[2],
    random = upper_bounds < thresholds_random[1] | lower_bounds > thresholds_random[2]
  )

  d <- data.frame(
    Row = seq_along(x$TE),
    Outlier_fixed = as.numeric(outlier$fixed),
    Outlier_random = as.numeric(outlier$random)
  )

  # Attributes
  class(outlier) <- c("check_outliers_metagen", class(outlier))
  attr(outlier, "data") <- d
  attr(outlier, "text_size") <- 3
  attr(outlier, "studies") <- x$studlab
  attr(outlier, "outlier_count") <- sum(c(outlier$fixed, outlier$random))

  outlier
}

#' @export
check_outliers.meta <- check_outliers.metagen

#' @export
check_outliers.metabin <- check_outliers.metagen


#' @rdname check_outliers
#' @export
check_outliers.performance_simres <- function(x, type = "default", iterations = 100, alternative = "two.sided", ...) {
  type <- match.arg(type, c("default", "binomial", "bootstrap"))
  alternative <- match.arg(alternative, c("two.sided", "greater", "less"))

  insight::check_if_installed("DHARMa")
  result <- DHARMa::testOutliers(x, type = type, nBoot = iterations, alternative = alternative, plot = FALSE, ...)

  outlier <- list(
    Coefficient = as.vector(result$estimate),
    Expected = as.numeric(gsub("(.*)\\(expected: (\\d.*)\\)", "\\2", names(result$estimate))),
    CI_low = result$conf.int[1],
    CI_high = result$conf.int[2],
    p_value = result$p.value
  )
  class(outlier) <- c("check_outliers_simres", class(outlier))
  outlier
}

#' @export
check_outliers.DHARMa <- check_outliers.performance_simres



# Thresholds --------------------------------------------------------------

.check_outliers_thresholds <- function(x) {
  suppressWarnings(.check_outliers_thresholds_nowarn(x))
}

.check_outliers_thresholds_nowarn <- function(x) {
  zscore <- stats::qnorm(p = 1 - 0.001 / 2)
  zscore_robust <- stats::qnorm(p = 1 - 0.001 / 2)
  iqr <- 1.7
  ci <- 1 - 0.001
  eti <- 1 - 0.001
  hdi <- 1 - 0.001
  bci <- 1 - 0.001
  cook <- stats::qf(0.5, ncol(x), nrow(x) - ncol(x))
  pareto <- 0.7
  mahalanobis_value <- stats::qchisq(p = 1 - 0.001, df = ncol(x))
  mahalanobis_robust <- stats::qchisq(p = 1 - 0.001, df = ncol(x))
  mcd <- stats::qchisq(p = 1 - 0.001, df = ncol(x))
  ics <- 0.001
  optics <- 2 * ncol(x)
  lof <- 0.001

  list(
    zscore = zscore,
    zscore_robust = zscore_robust,
    iqr = iqr,
    ci = ci,
    hdi = hdi,
    eti = eti,
    bci = bci,
    cook = cook,
    pareto = pareto,
    mahalanobis = mahalanobis_value,
    mahalanobis_robust = mahalanobis_robust,
    mcd = mcd,
    ics = ics,
    optics = optics,
    lof = lof
  )
}



# utilities --------------------

.check_outliers_zscore <- function(x,
                                   threshold = stats::qnorm(p = 1 - 0.001 / 2),
                                   robust = TRUE,
                                   method = "max",
                                   ID.names = NULL) {
  if (threshold < 1) {
    insight::format_error(
      "The `threshold` argument must be one or greater for method `zscore`."
    )
  }

  x <- as.data.frame(x)

  # Standardize
  if (robust) {
    d <- abs(as.data.frame(lapply(
      x,
      function(x) (x - stats::median(x, na.rm = TRUE)) / stats::mad(x, na.rm = TRUE)
    )))
  } else {
    d <- abs(as.data.frame(lapply(
      x,
      function(x) (x - mean(x, na.rm = TRUE)) / stats::sd(x, na.rm = TRUE)
    )))
  }

  out <- data.frame(Row = seq_len(nrow(as.data.frame(d))))

  if (!is.null(ID.names)) {
    out <- cbind(out, ID.names)
  }

  out$Distance_Zscore <- apply(d, 1, function(x) {
    ifelse(all(is.na(x)), NA, max(x, na.rm = TRUE))
  })

  # Filter
  out$Outlier_Zscore <- as.numeric(out$Distance_Zscore > threshold)

  output <- list(
    data_zscore = out,
    threshold_zscore = threshold
  )

  if (isTRUE(robust)) {
    names(output) <- paste0(names(output), "_robust")
    output$data_zscore_robust <- datawizard::data_addsuffix(
      output$data_zscore_robust, "_robust",
      select = "Zscore$", regex = TRUE
    )
  }

  output
}



.check_outliers_iqr <- function(x,
                                threshold = 1.7,
                                method = "tukey",
                                ID.names = NULL) {
  d <- data.frame(Row = seq_len(nrow(as.data.frame(x))))
  Distance_IQR <- d

  for (col in seq_len(ncol(as.data.frame(x)))) {
    v <- x[, col]

    if (method == "tukey") {
      iqr <- stats::quantile(v, 0.75, na.rm = TRUE) - stats::quantile(v, 0.25, na.rm = TRUE)
    } else {
      iqr <- stats::IQR(v, na.rm = TRUE)
    }

    lower <- stats::quantile(v, 0.25, na.rm = TRUE) - (iqr * threshold)
    upper <- stats::quantile(v, 0.75, na.rm = TRUE) + (iqr * threshold)

    m.int <- stats::median(c(lower, upper), na.rm = TRUE)
    d2 <- abs(v - m.int)
    Distance_IQR[names(as.data.frame(x))[col]] <- d2 / (iqr * threshold)

    d[names(as.data.frame(x))[col]] <- ifelse(v > upper, 1, ifelse(v < lower, 1, 0)) # nolint
  }

  out <- data.frame(Row = d$Row)
  d$Row <- NULL
  Distance_IQR$Row <- NULL

  if (!is.null(ID.names)) {
    out <- cbind(out, ID.names)
  }

  # out$Distance_IQR <- Distance_IQR

  out$Distance_IQR <- vapply(as.data.frame(t(Distance_IQR)), function(x) {
    ifelse(all(is.na(x)), NA_real_, max(x, na.rm = TRUE))
  }, numeric(1))

  out$Outlier_IQR <- vapply(as.data.frame(t(d)), function(x) {
    ifelse(all(is.na(x)), NA_real_, max(x, na.rm = TRUE))
  }, numeric(1))

  list(
    data_iqr = out,
    threshold_iqr = threshold
  )
}



.check_outliers_ci <- function(x,
                               threshold = 1 - 0.001,
                               method = "ci",
                               ID.names = NULL) {
  # Run through columns
  d <- data.frame(Row = seq_len(nrow(x)))
  Distance_CI <- d

  for (col in names(x)) {
    v <- x[, col]
    ci <- bayestestR::ci(v, ci = threshold, method = method)
    d[col] <- ifelse(x[[col]] > ci$CI_high | x[[col]] < ci$CI_low, 1, 0) # nolint

    m.int <- stats::median(c(ci$CI_low, ci$CI_high), na.rm = TRUE)
    d2 <- abs(v - m.int)
    ci.range <- (ci$CI_high - ci$CI_low) / 2

    Distance_CI[col] <- d2 / ci.range
  }

  out.0 <- data.frame(Row = d$Row)
  d$Row <- NULL
  Distance_CI$Row <- NULL

  if (!is.null(ID.names)) {
    out.0 <- cbind(out.0, ID.names)
  }

  # Take the max
  out <- as.data.frame(apply(Distance_CI, 1, max, na.rm = TRUE))
  names(out) <- paste0("Distance_", method)

  # Filter
  out[paste0("Outlier_", method)] <- vapply(
    as.data.frame(t(d)),
    function(x) ifelse(all(is.na(x)), NA_real_, max(x, na.rm = TRUE)),
    numeric(1)
  )

  out <- cbind(out.0, out)

  output <- list(
    data_ = out,
    threshold_ = threshold
  )
  names(output) <- paste0(names(output), method)
  output
}



.check_outliers_cook <- function(x,
                                 threshold = NULL,
                                 ID.names = NULL) {
  # Compute
  d <- unname(stats::cooks.distance(x))
  out <- data.frame(Row = seq_along(d))
  out$Distance_Cook <- d

  # Filter
  out$Outlier_Cook <- as.numeric(out$Distance_Cook > threshold)

  list(
    data_cook = out,
    threshold_cook = threshold
  )
}



.check_outliers_pareto <- function(x, threshold = 0.7) {
  insight::check_if_installed("loo")

  # Compute
  d <- suppressWarnings(loo::pareto_k_values(loo::loo(x)))

  out <- data.frame(Row = seq_along(d))
  out$Distance_Pareto <- d

  # Filter
  out$Outlier_Pareto <- as.numeric(out$Distance_Pareto > threshold)

  list(
    data_pareto = out,
    threshold_pareto = threshold
  )
}



.check_outliers_mahalanobis <- function(x,
                                        threshold = stats::qchisq(
                                          p = 1 - 0.001, df = ncol(x)
                                        ),
                                        ID.names = NULL,
                                        ...) {
  if (anyNA(x) || any(with(x, x == Inf))) {
    insight::format_error("Missing or infinite values are not allowed.")
  }

  out <- data.frame(Row = seq_len(nrow(x)))

  if (!is.null(ID.names)) {
    out <- cbind(out, ID.names)
  }

  # Compute
  out$Distance_Mahalanobis <- stats::mahalanobis(x, center = colMeans(x), cov = stats::cov(x), ...)

  # Filter
  out$Outlier_Mahalanobis <- as.numeric(out$Distance_Mahalanobis > threshold)

  list(
    data_mahalanobis = out,
    threshold_mahalanobis = threshold
  )
}



# Bigutils not yet fully available on CRAN
.check_outliers_mahalanobis_robust <- function(x,
                                               threshold = stats::qchisq(
                                                 p = 1 - 0.001, df = ncol(x)
                                               ),
                                               ID.names = NULL) {
  out <- data.frame(Row = seq_len(nrow(x)))

  if (!is.null(ID.names)) {
    out <- cbind(out, ID.names)
  }

  insight::check_if_installed("bigutilsr")

  # Compute
  U <- svd(scale(x))$u
  out$Distance_Mahalanobis_robust <- bigutilsr::dist_ogk(U)

  # Filter
  out$Outlier_Mahalanobis_robust <- as.numeric(
    out$Distance_Mahalanobis_robust > threshold
  )

  list(
    data_mahalanobis_robust = out,
    threshold_mahalanobis_robust = threshold
  )
}



.check_outliers_mcd <- function(x,
                                threshold = stats::qchisq(p = 1 - 0.001, df = ncol(x)),
                                percentage_central = 0.75,
                                ID.names = NULL,
                                verbose = TRUE,
                                ...) {
  out <- data.frame(Row = seq_len(nrow(x)))

  if (!is.null(ID.names)) {
    out <- cbind(out, ID.names)
  }

  # check whether N to p ratio is not too large, else MCD flags too many outliers
  # See #672: This does seem to be a function of the N/p (N = sample size; p =
  # number of parameters) ratio. When it is larger than 10, the % of outliers
  # flagged is okay (in well behaved data). This makes sense: the MCD looks at
  # the cov matrix of subsamples of the data - with high dimensional data, small
  # samples sizes will give highly variable cov matrices, as so the "smallest"
  # one will probably miss-represent the data.

  if ((nrow(x) / ncol(x)) <= 10 && isTRUE(verbose)) {
    insight::format_warning(
      "The sample size is too small in your data, relative to the number of variables, for MCD to be reliable.",
      "You may try to increase the `percentage_central` argument (must be between 0 and 1), or choose another method."
    )
  }

  insight::check_if_installed("MASS")

  # Compute
  mcd <- MASS::cov.mcd(x, quantile.used = percentage_central * nrow(x))
  out$Distance_MCD <- stats::mahalanobis(x, center = mcd$center, cov = mcd$cov)

  # Filter
  out$Outlier_MCD <- as.numeric(out$Distance_MCD > threshold)

  list(
    data_mcd = out,
    threshold_mcd = threshold
  )
}



.check_outliers_ics <- function(x,
                                threshold = 0.001,
                                ID.names = NULL,
                                ...) {
  out <- data.frame(Row = seq_len(nrow(x)))

  if (!is.null(ID.names)) {
    out <- cbind(out, ID.names)
  }

  insight::check_if_installed("ICS")
  insight::check_if_installed("ICSOutlier")

  # Get n cores
  n_cores <- if (requireNamespace("parallel", quietly = TRUE)) {
    getOption("mc.cores", 1L)
  } else {
    NULL
  }

  # tell user about n-cores option
  if (is.null(n_cores)) {
    insight::format_alert(
      "Package `parallel` is not installed. `check_outliers()` will run on a single core.",
      "Install package `parallel` and set, for example, `options(mc.cores = 4)` to run on multiple cores."
    )
  } else if (n_cores == 1) {
    insight::format_alert(
      "Package `parallel` is installed, but `check_outliers()` will run on a single core.",
      "To use multiple cores, set `options(mc.cores = 4)` (for example)."
    )
  }

  # Run algorithm
  # Try
  outliers <- tryCatch(
    {
      ics <- ICS::ics2(x)
      ICSOutlier::ics.outlier(
        object = ics,
        ncores = n_cores,
        level.dist = threshold,
        ...
      )
    },
    error = function(e) {
      NULL
    }
  )

  if (is.null(outliers)) {
    if (ncol(x) == 1) {
      insight::print_color("At least two numeric predictors are required to detect outliers.\n", "red")
    } else {
      insight::print_color(sprintf("`check_outliers()` does not support models of class `%s`.\n", class(x)[1]), "red")
    }
    return(NULL)
  }

  # Get results
  cutoff <- .safe(outliers@ics.dist.cutoff)
  # validation check
  if (is.null(cutoff)) {
    insight::print_color("Could not detect cut-off for outliers.\n", "red")
    return(NULL)
  }
  out$Distance_ICS <- outliers@ics.distances
  out$Outlier_ICS <- as.numeric(out$Distance_ICS > cutoff)

  # Out
  list(
    data_ics = out,
    threshold_ics = threshold
  )
}



.check_outliers_optics <- function(x,
                                   threshold = NULL,
                                   ID.names = NULL) {
  out <- data.frame(Row = seq_len(nrow(x)))

  if (!is.null(ID.names)) {
    out <- cbind(out, ID.names)
  }

  insight::check_if_installed("dbscan")

  # Compute
  rez <- dbscan::optics(x, minPts = threshold)
  rez <- dbscan::extractXi(rez, xi = 0.05) # TODO: find automatic way of setting xi

  out$Distance_OPTICS <- rez$coredist

  # Filter
  if (is.null(rez$cluster)) {
    out$Outlier_OPTICS <- 0
  } else {
    out$Outlier_OPTICS <- as.numeric(rez$cluster == 0)
  }

  list(
    data_optics = out,
    threshold_optics = threshold
  )
}


# .check_outliers_iforest <- function(x, threshold = 0.025) {
#   out <- data.frame(Row = seq_len(nrow(x)))
#
#   # Install packages
#  insight::check_if_installed("solitude")
#
#   # Compute
#   if (utils::packageVersion("solitude") < "0.2.0") {
#     iforest <- solitude::isolationForest(x)
#     out$Distance_iforest <- stats::predict(iforest, x, type = "anomaly_score")
#   } else if (utils::packageVersion("solitude") == "0.2.0") {
#     stop(paste("Must update package `solitude` (above version 0.2.0).",
#                "Please run `install.packages('solitude')`."), call. = FALSE)
#   } else {
#     iforest <- solitude::isolationForest$new(sample_size = nrow(x))
#     suppressMessages(iforest$fit(x))
#     out$Distance_iforest <- iforest$scores$anomaly_score
#   }
#
#
#   # Threshold
#   cutoff <- stats::median(out$Distance_iforest) + stats::qnorm(1 - threshold) * stats::mad(out$Distance_iforest)
#   # Filter
#   out$Outlier_iforest <- as.numeric(out$Distance_iforest >= cutoff)
#
#   out$Row <- NULL
#   list(
#     "data_iforest" = out,
#     "threshold_iforest" = threshold
#   )
# }



.check_outliers_lof <- function(x,
                                threshold = 0.001,
                                ID.names = NULL) {
  if (threshold < 0 || threshold > 1) {
    insight::format_error(
      "The `threshold` argument must be between 0 and 1 for method `lof`."
    )
  }

  out <- data.frame(Row = seq_len(nrow(x)))

  if (!is.null(ID.names)) {
    out <- cbind(out, ID.names)
  }

  insight::check_if_installed("dbscan")

  # Compute
  out$Distance_LOF <- log(dbscan::lof(x, minPts = ncol(x)))

  # Threshold
  cutoff <- stats::qnorm(1 - threshold) * stats::sd(out$Distance_LOF)

  # Filter
  out$Outlier_LOF <- as.numeric(out$Distance_LOF > cutoff)

  list(
    data_lof = out,
    threshold_lof = threshold
  )
}



# influential observations data --------

.influential_obs <- function(x, threshold = NULL) {
  .safe(.diag_influential_obs(x, threshold = threshold))
}



# Non-supported model classes ---------------------------------------

#' @export
check_outliers.glmmTMB <- function(x, ...) {
  insight::format_alert(paste0("`check_outliers()` does not yet support models of class `", class(x)[1], "`."))
  NULL
}

#' @export
check_outliers.lmrob <- check_outliers.glmmTMB

#' @export
check_outliers.glmrob <- check_outliers.glmmTMB

#' @export
check_outliers.rq <- check_outliers.glmmTMB

#' @export
check_outliers.rqs <- check_outliers.glmmTMB

#' @export
check_outliers.rqss <- check_outliers.glmmTMB

Try the performance package in your browser

Any scripts or data that you put into this service are public.

performance documentation built on Oct. 19, 2024, 1:07 a.m.