Nothing
init_fitch <- function(obj, parsinfo=FALSE, order=FALSE, m=4L, ...){
if(parsinfo) obj <- removeParsimonyUninfomativeSites(obj, ...)
if(is.null(attr(obj, "p0"))) attr(obj, "p0") <- 0
attr(obj, "nSeq") <- length(obj) # add lengths
if(is.null(attr(obj, "weight"))){
attr(obj, "weight") <- rep(1, length(obj[[1]]))
order <- FALSE
}
if(sum( abs (attr(obj, "weight") %% 1L) ) >1) order <- FALSE
if(order){
ord <- order(attr(obj, "weight"), decreasing = TRUE)
obj <- subset(obj, select = ord, site.pattern=TRUE)
}
weight <- attr(obj, "weight")
l <- length(weight)
# can be NA
first_1 <- match(1L, weight)
if(is.na(first_1)) first_1 <- l
if(first_1 == 1L) first_1 <- 0L
if(!all(weight[first_1:l]==1)) first_1 <- l
d_con <- dim(attr(obj, "contrast"))
contrast <- matrix(0L, d_con[1], d_con[2])
contrast[attr(obj, "contrast") > 1e-8] <- 1L
contrast <- rbind(0L, contrast)
storage.mode(contrast) <- "integer"
attr(obj, "contrast") <- contrast
f <- new(Fitch, obj, as.integer(first_1), as.integer(m))
f
}
#' @rdname parsimony
#' @export
fitch <- function(tree, data, site = "pscore"){
if(any(!is.binary(tree))) tree <- multi2di(tree)
tree <- reorder(tree, "postorder")
nr <- attr(data, "nr")
fun <- function(tree, site="pscore", nr){
if(site=="pscore") return(f$pscore(tree$edge))
sites <- f$sitewise_pscore(tree$edge)
sites[seq_len(nr)]
}
fun2 <- function(tree, data, site, nr) {
data <- subset(data, tree$tip.label)
f <- init_fitch(data, FALSE, FALSE, m=2L)
if(site=="pscore") return(f$pscore(tree$edge))
sites <- f$sitewise_pscore(tree$edge)
sites[seq_len(nr)]
}
if (inherits(tree, "multiPhylo")) {
TL <- attr(tree, "TipLabel")
if (!is.null(TL)) {
data <- subset(data, TL)
f <- init_fitch(data, FALSE, FALSE, m=2L)
tree <- unclass(tree)
res <- sapply(tree, function(x)fun(x, site=site, nr=nr))
}
else{
res <- sapply(tree, fun2, data, site, nr)
}
return(res)
}
if(inherits(tree, "phylo")) {
data <- subset(data, tree$tip.label)
f <- init_fitch(data, FALSE, FALSE, m=2L)
return(fun(tree, site, nr))
}
NULL
}
#' @rdname parsimony
#' @export
random.addition <- function (data, tree=NULL, method = "fitch")
{
label <- names(data)
nTips <- as.integer(length(label))
if (nTips < 4L)
return(stree(nTips, tip.label = sample(label)))
if(!is.null(tree)){
if(!is.binary(tree)) tree <- multi2di(tree)
if(!is.null(tree$edge.length)) tree$edge.length <- NULL
tree <- reorder(tree, "postorder")
tips <- Ntip(tree)
edge <- tree$edge
edge[edge>tips] <- edge[edge>tips] + as.integer(nTips - tips)
tree$edge <- edge
remaining <- sample(setdiff(label, tree$tip.label))
tree$tip.label <- c(tree$tip.label, remaining)
tree <- checkLabels(tree, label)
remaining <- match(remaining, label)
}
else{
remaining <- as.integer(sample(nTips))
tree <- structure(list(edge = structure(c(rep(nTips + 1L, 3),
remaining[1:3]), .Dim = c(3L, 2L)), tip.label = label,
Nnode = 1L), .Names = c("edge", "tip.label", "Nnode"),
class = "phylo", order = "postorder")
remaining <- remaining[-c(1:3)]
}
f <- init_fitch(data, parsinfo = TRUE, order = TRUE, m=4L)
for (i in remaining) {
edge <- tree$edge
f$traversetwice(edge, 0L)
f$root_all_node(edge)
score <- f$pscore_vec(edge[,2] + 2L * nTips, i)
nt <- which.min(score)
tree <- addOne(tree, i, nt)
}
attr(tree, "pscore") <- f$pscore(tree$edge)
tree
}
fitch_spr <- function (tree, f, trace=0L)
{
nTips <- as.integer(length(tree$tip.label))
m <- max(tree$edge)
# f <- init_fitch(data, FALSE, FALSE, m=4L)
for (i in 1:nTips) {
# remove tip
treetmp <- dropTip(tree, i)
edge <- treetmp$edge
f$prep_spr(edge)
score <- f$pscore_vec(edge[,2] + 2L * nTips, i)
nt <- which.min(score)
# check if different
tree <- addOne(treetmp, i, nt)
}
root <- getRoot(tree)
ch <- allChildren(tree)
for (i in (nTips + 1L):m) {
if (i != root) {
tmp <- dropNode(tree, i, all.ch = ch)
if (!is.null(tmp)) {
f$prep_spr(tmp[[1]]$edge)
score <- f$pscore_vec(tmp[[1]]$edge[,2] + 2L * nTips, i)
nt <- which.min(score)
if(!(tmp[[1]]$edge[nt, 2L] %in% tmp[[4]])){
tree <- addOneTree(tmp[[1]], tmp[[2]], nt, tmp[[3]])
ch <- allChildren(tree)
if(trace) print(f$pscore(tree$edge))
}
}
}
}
attr(tree, "pscore") <- f$pscore(tree$edge)
tree
}
indexNNI_fitch <- function(tree, offset=2L*Ntip(tree), rooted=is.rooted(tree)) {
offset <- as.integer(offset)
parent <- tree$edge[, 1]
child <- tree$edge[, 2]
ind <- child
nTips <- length(tree$tip.label)
ind <- ind[ind > nTips]
edgeMatrix <- matrix(0L, length(ind), 6L)
pvector <- integer(max(parent))
pvector[child] <- parent
cvector <- Children(tree) # allChildren
# a d
# \ /
# e-----f d is closest to root, f is root from subtree a,b,c
# / \
# b c c(a,b,c,d,e,f)
# d d is f + offset, if offset > 0
# /
# f
# / \
# e \
# / \ c
# a b
k <- 1
for (i in ind) {
f <- pvector[i]
ab <- cvector[[i]]
ind1 <- cvector[[f]]
cd <- ind1[ind1 != i]
ef <- c(i, f)
if (pvector[f]){
cd <- c(cd, f + offset)
}
if(offset < 0L){
tmp <- pvector[f]
if(tmp==0L) tmp <- f
# think about this more
cd[2] <- tmp
}
# else if(rooted) cd <- c(cd, NA_integer_)
# else if(!rooted) ef <- c(i, cd[2])
# else cd[2] <- f
if (length(cd)==1) cd <- c(cd, NA_integer_) # if trees are rooted
edgeMatrix[k, ] <- c(ab, cd, ef)
k <- k + 1
}
#cbind(edgeMatrix[c(1, 3, 2, 4), ], edgeMatrix[c(2, 3, 1, 4), ])
edgeMatrix
}
nni2 <- function(x){
INDEX <- indexNNI_fitch(x)[, 1:4, drop=FALSE]
INDEX <- rbind(INDEX[, c(1, 3, 2, 4)], INDEX[, c(2, 3, 1, 4)])
l <- nrow(INDEX)
res <- vector("list", l)
# for(i in seq_len(l)) res[[i]] <- changeEdge(x, INDEX[c(2, 3), i])
for(i in seq_len(l)) res[[i]] <- changeEdge(x, INDEX[i, c(2, 3)])
class(res) <- "multiPhylo"
res
}
fitch_nni <- function(tree, f) {
p0 <- f$pscore(tree$edge)
nTips <- as.integer(length(tree$tip.label))
INDEX <- indexNNI_fitch(tree)
l <- nrow(INDEX)
f$traversetwice(tree$edge, 1L)
M <- f$pscore_nni(INDEX[, 1L:4L, drop=FALSE])
M <- M[, -1L] - M[, 1L]
M <- as.vector(M)
INDEX <- rbind(INDEX[, c(1, 3, 2, 4, 5, 6)], INDEX[, c(2, 3, 1, 4, 5, 6)])
swap <- 0
candidates <- which(M < 0)
while (length(candidates)>0) {
pscore <- M[candidates]
ind <- which.min(pscore)
tree2 <- changeEdge(tree, INDEX[candidates[ind], c(2, 3)])
test <- f$pscore(tree2$edge)
if (test < p0) {
p0 <- test
swap <- swap + 1
tree <- tree2
indi <- which(INDEX[, 5] %in% INDEX[candidates[ind],])
candidates <- setdiff(candidates, indi)
}
else candidates <- candidates[-ind]
}
p0 <- f$pscore(tree$edge)
list(tree = tree, pscore = p0, swap = swap)
}
optim.fitch <- function(tree, data, trace = 1, rearrangements = "NNI", ...) {
if (!inherits(tree, "phylo")) stop("tree must be of class phylo")
if (!is.binary(tree)) {
tree <- multi2di(tree)
attr(tree, "order") <- NULL
}
if (is.rooted(tree)) {
tree <- unroot(tree)
attr(tree, "order") <- NULL
}
if (is.null(attr(tree, "order")) || attr(tree, "order") != "postorder")
tree <- reorder(tree, "postorder")
if (!inherits(data, "phyDat")) stop("data must be of class phyDat")
rt <- FALSE
# New
data <- removeParsimonyUninfomativeSites(data, recursive=TRUE)
star_tree <- ifelse(attr(data, "nr") == 0, TRUE, FALSE)
add_taxa <- ifelse(is.null(attr(data, "duplicated")), FALSE, TRUE)
nTips <- length(data)
if (nTips < 4L || star_tree) {
nam <- names(data)
if (star_tree) tree <- stree(length(nam), tip.label = nam)
else tree <- stree(nTips, tip.label = nam)
if(add_taxa) tree <- addTaxa(tree, attr(data, "duplicated"))
tree <- unroot(tree)
return(tree)
}
tree <- keep.tip(tree, names(data))
if(length(tree$tip.label) > 2) tree <- unroot(tree)
tree <- reorder(tree, "postorder")
p0 <- attr(data, "p0")
nr <- attr(data, "nr")
nTips <- as.integer(length(tree$tip.label))
if(nTips < 5) rearrangements <- "NNI"
data <- subset(data, tree$tip.label, order(attr(data, "weight"),
decreasing = TRUE), site.pattern=TRUE)
f <- init_fitch(data, FALSE, FALSE, m=4L)
m <- nr * (2L * nTips - 2L)
on.exit({
if (add_taxa) tree <- addTaxa(tree, attr(data, "duplicated"))
tree <- unroot(tree)
attr(tree, "pscore") <- pscore
return(tree)
})
tree$edge.length <- NULL
swap <- 0
iter <- TRUE
if(nTips < 4) iter <- FALSE
pscore <- f$pscore(tree$edge)
while (iter) {
res <- fitch_nni(tree, f)
tree <- res$tree
psc <- res$pscore
if (trace > 1) cat("optimize topology (NNI): ", pscore, "-->", psc, "\n")
if(psc < pscore) pscore <- psc
swap <- swap + res$swap
if (res$swap == 0) {
if (rearrangements == "SPR") {
tree2 <- fitch_spr(tree, f)
psc <- f$pscore(tree2$edge)
if (trace > 1) cat("optimize topology (SPR): ", pscore, "-->",
psc , "\n")
if (pscore < psc + 1e-6) iter <- FALSE
else{
pscore <- psc
tree <- tree2
}
}
# if (rearrangements == "TBR") {}
else iter <- FALSE
}
}
if (trace > 0) cat("Final p-score", pscore, "after ", swap,
"nni operations \n")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.