Nothing
optimQ <- function(tree, data, Q = rep(1, 6), subs = rep(1, length(Q)),
trace = 0, ...) {
m <- length(Q)
n <- max(subs)
o <- min(subs)
ab <- numeric(n)
# ab = log(Q[match(1:n, subs)])
for (i in 1:n) ab[i] <- log(Q[which(subs == i)[1]])
fn <- function(ab, tree, data, m, n, o, subs, ...) {
Q <- numeric(m)
for (i in 1:n) Q[subs == i] <- ab[i]
if (o < 0) Q[subs < 0] <- -Inf
pml.fit(tree, data, Q = exp(Q), ...) # Q^2, ...)
}
res <- optim(par = ab, fn = fn, gr = NULL, method = "L-BFGS-B", lower = -Inf,
upper = 10, control = list(fnscale = -1, maxit = 25,
trace = trace), tree = tree,
data = data, m = m, n = n, o = o, subs = subs, ...)
Q <- rep(1, m)
for (i in 1:n) Q[subs == i] <- exp(res[[1]][i])
if (o < 0) Q[subs < 0] <- 0
res[[1]] <- Q
res
}
CodonQ <- function(subs, syn, tstv = 1, dnds = 1) {
Q <- numeric(length(subs))
Q[subs == 1] <- 1 # transversion
Q[subs == 2] <- tstv # transition
Q[syn == 1] <- Q[syn == 1] * dnds
Q[syn < 0] <- 0
Q
}
# needs no Q
optimCodon <- function(tree, data, Q, subs, syn, trace = 0L, ab = c(0, 0),
optK = TRUE, optW = TRUE, ...) {
m <- length(Q)
n <- 1L
fn <- function(ab, tree, data, m, n, subs, syn, optK, optW, ...) {
Q <- numeric(m)
Q[subs == 1] <- 0 # transversion
if (optK) Q[subs == 2] <- ab[1] # transition
else Q[subs == 2] <- 0
if (optW) Q[syn == 1] <- Q[syn == 1] + ab[2] # ab[n+1] dnds
Q[syn < 0] <- -Inf
pml.fit(tree, data, Q = exp(Q), ...) # Q^2, ...)
}
res <- optim(par = ab, fn = fn, gr = NULL, method = "L-BFGS-B",
lower = -Inf, upper = Inf, control = list(fnscale = -1,
maxit = 25, trace = trace), tree = tree, data = data, m = m, n = n,
subs = subs, syn = syn, optK = optK, optW = optW, ...)
ab <- exp(res[[1]])
Q[subs == 1] <- 1 # transversion
if (optK) Q[subs == 2] <- ab[1] # transition
else {
Q[subs == 2] <- 1
ab[1] <- 1
}
if (optW) Q[syn == 1] <- Q[syn == 1] * ab[2] # dnds
else ab[2] <- 1
Q[syn < 0] <- 0
res[[5]] <- ab
res[[1]] <- Q
res
}
subsChoice <- function(type = .dnamodels, has_gap_state=FALSE) {
type <- match.arg(type)
res <- switch(type,
JC = list(optQ = FALSE, optBf = FALSE, subs = c(0, 0, 0, 0, 0, 0)),
F81 = list(optQ = FALSE, optBf = TRUE, subs = c(0, 0, 0, 0, 0, 0)),
K80 = list(optQ = TRUE, optBf = FALSE, subs = c(0, 1, 0, 0, 1, 0)),
HKY = list(optQ = TRUE, optBf = TRUE, subs = c(0, 1, 0, 0, 1, 0)),
TrNe = list(optQ = TRUE, optBf = FALSE, subs = c(0, 1, 0, 0, 2, 0)),
TrN = list(optQ = TRUE, optBf = TRUE, subs = c(0, 1, 0, 0, 2, 0)),
TPM1 = list(optQ = TRUE, optBf = FALSE, subs = c(0, 1, 2, 2, 1, 0)),
K81 = list(optQ = TRUE, optBf = FALSE, subs = c(0, 1, 2, 2, 1, 0)),
TPM1u = list(optQ = TRUE, optBf = TRUE, subs = c(0, 1, 2, 2, 1, 0)),
TPM2 = list(optQ = TRUE, optBf = FALSE, subs = c(1, 2, 1, 0, 2, 0)),
TPM2u = list(optQ = TRUE, optBf = TRUE, subs = c(1, 2, 1, 0, 2, 0)),
TPM3 = list(optQ = TRUE, optBf = FALSE, subs = c(1, 2, 0, 1, 2, 0)),
TPM3u = list(optQ = TRUE, optBf = TRUE, subs = c(1, 2, 0, 1, 2, 0)),
TIM1e = list(optQ = TRUE, optBf = FALSE, subs = c(0, 1, 2, 2, 3, 0)),
TIM1 = list(optQ = TRUE, optBf = TRUE, subs = c(0, 1, 2, 2, 3, 0)),
TIM2e = list(optQ = TRUE, optBf = FALSE, subs = c(1, 2, 1, 0, 3, 0)),
TIM2 = list(optQ = TRUE, optBf = TRUE, subs = c(1, 2, 1, 0, 3, 0)),
TIM3e = list(optQ = TRUE, optBf = FALSE, subs = c(1, 2, 0, 1, 3, 0)),
TIM3 = list(optQ = TRUE, optBf = TRUE, subs = c(1, 2, 0, 1, 3, 0)),
TVMe = list(optQ = TRUE, optBf = FALSE, subs = c(1, 2, 3, 4, 2, 0)),
TVM = list(optQ = TRUE, optBf = TRUE, subs = c(1, 2, 3, 4, 2, 0)),
SYM = list(optQ = TRUE, optBf = FALSE, subs = c(1, 2, 3, 4, 5, 0)),
GTR = list(optQ = TRUE, optBf = TRUE, subs = c(1, 2, 3, 4, 5, 0))
)
if(has_gap_state){
tmp <- matrix(0,4,4)
tmp[lower.tri(tmp)] <- res$subs
tmp <- rbind(tmp, max(tmp) + 1)
res$subs <- tmp[lower.tri(tmp)]
res$optQ <- TRUE
}
res
}
subsChoice_USER <- function(type = .usermodels, nstates) {
nstates <- as.integer(nstates)
n <- (nstates * (nstates-1L)/2)
subs0 <- numeric(n)
subsSym <- c(seq_len(n-1), 0)
subsOrd <- rep(-1, n)
ind <- cumsum(c(1, (nstates-1):2))
subsOrd[ind] <- 0
Q_ord <- rep(0, n)
Q_ord[ind] <- 1
type <- match.arg(type)
switch(type,
ER = list(optQ = FALSE, optBf = FALSE, subs = subs0),
FREQ = list(optQ = FALSE, optBf = TRUE, subs = subs0),
SYM = list(optQ = TRUE, optBf = FALSE, subs = subsSym),
ORDERED = list(optQ = FALSE, optBf = FALSE, subs = subsOrd,
Q=Q_ord),
GTR = list(optQ = TRUE, optBf = TRUE, subs = subsSym)
)
}
optimGamma <- function(tree, data, shape = 1, k = 4, ...) {
fn <- function(shape, tree, data, k, ...) pml.fit(tree, data, shape = shape,
k = k, ...)
res <- optimize(f = fn, interval = c(0.1, 100), lower = 0.1, upper = 100,
maximum = TRUE, tol = .001, tree = tree, data = data, k = k, ...)
res
}
optimInv <- function(tree, data, inv = 0.01, INV, ...) {
weight <- as.double(attr(data, "weight"))
tmp <- as.vector( INV %*% rep(1, attr(data, "nc")) )
ind <- which(tmp > 0)
max_inv <- sum(weight[ind]) / sum(weight)
fn <- function(inv, tree, data, ...) pml.fit(tree, data, inv = inv, INV = INV,
ll.0 = NULL, ...)
res <- optimize(f = fn, interval = c(0, max_inv), lower = 0, upper = max_inv,
maximum = TRUE, tol = .0001, tree = tree, data = data, ...)
res
}
optimFreeRate <- function(tree, data, g = c(.25, .75, 1, 2), k=4, w=w, ...) {
g0 <- c(g[1], diff(g))
g0[g0 < 1e-8] <- 1e-8 # required by constrOptim
R <- matrix(0, k, k)
R[lower.tri(R, TRUE)] <- 1
fn <- function(g0, tree, data, R, w, k, ...) {
g_new <- as.vector(R %*% g0)
pml.fit(tree, data, g=g_new, w=w, k=k, ...)
}
ui <- rbind(R, diag(k))
ci <- rep(0, 2 * k)
# Maybe constrain rates * omega
res <- constrOptim(g0, fn, grad = NULL, ui = ui, ci = ci, mu = 1e-04,
control = list(fnscale = -1), method = "Nelder-Mead",
outer.iterations = 100, outer.eps = 1e-08, tree = tree,
data = data, R = R, w = w, k=k, ...)
rate <- res[[1]]
res[[1]] <- as.vector(R %*% rate)
res
}
optimWs <- function(tree, data, w = c(.25, .25, .25, .25), g=g, ...) {
k <- length(w)
nenner <- 1 / w[1]
eta <- log(w * nenner)
eta <- eta[-1]
fn <- function(eta, tree, data, g, k, ...) {
eta <- c(0, eta)
w_new <- exp(eta) / sum(exp(eta))
pml.fit(tree, data, g=g, w=w_new, k=k, ...)
}
if (k == 2) res <- optimize(f = fn, interval = c(-3, 3), lower = -3,
upper = 3, maximum = TRUE,
tol = .Machine$double.eps^0.25, tree = tree,
data = data, g = g, k=k, ...)
else res <- optim(eta, fn = fn, method = "L-BFGS-B", lower = -5, upper = 5,
control = list(fnscale = -1, maxit = 25), gr = NULL,
tree = tree, data = data, g = g, k = k, ...)
w <- exp(c(0, res[[1]]))
w <- w / sum(w)
result <- list(par = w, value = res[[2]])
result
}
# changed to c(-10,10) from c(-5,5)
optimRate <- function(tree, data, rate = 1, ...) {
fn <- function(rate, tree, data, ...)
pml.fit(tree, data, rate = exp(rate), ...)
res <- optimize(f = fn, interval = c(-10, 10), tree = tree, data = data,
..., maximum = TRUE)
res[[1]] <- exp(res[[1]])
res
}
optimBf <- function(tree, data, bf = c(.25, .25, .25, .25), trace = 0, ...) {
l <- length(bf)
nenner <- 1 / bf[l]
lbf <- log(bf * nenner)
lbf <- lbf[-l]
fn <- function(lbf, tree, data, ...) {
bf <- exp(c(lbf, 0))
bf <- bf / sum(bf)
pml.fit(tree, data, bf = bf, ...)
}
res <- optim(par = lbf, fn = fn, gr = NULL, method = "Nelder-Mead",
control = list(fnscale = -1, maxit = 500, trace = trace),
tree = tree, data = data, ...)
bf <- exp(c(res[[1]], 0))
bf <- bf / sum(bf)
result <- list(bf = bf, loglik = res[[2]])
result
}
# ML F3x4 model
optimF3x4 <- function(tree, data, bf_codon = matrix(.25, 4, 3), trace = 0, ...){
l <- nrow(bf_codon)
nenner <- 1 / bf_codon[l, ]
lbf <- log(bf_codon * rep(nenner, each = 4))
lbf <- lbf[-l, ]
codon_abc <- attr(data, "levels")
fn <- function(lbf, tree, data, ...) {
dim(lbf) <- c(3, 3)
bf_codon <- rbind(exp(lbf), c(1, 1, 1))
bf_codon <- bf_codon / rep(colSums(bf_codon), each = 4)
bf <- F3x4_freq(bf_codon, CodonAlphabet = codon_abc)
pml.fit(tree, data, bf = bf, ...)
}
res <- optim(par = lbf, fn = fn, gr = NULL, method = "Nelder-Mead", control =
list(fnscale = -1, maxit = 500, trace = trace), tree = tree,
data = data, ...)
bf_codon <- rbind(exp(res[[1]]), c(1, 1, 1))
bf_codon <- bf_codon / rep(colSums(bf_codon), each = 4)
bf <- F3x4_freq(bf_codon, CodonAlphabet = codon_abc)
result <- list(bf = bf, loglik = res[[2]], bf_codon = bf_codon)
result
}
# predict.pml <- function(object, newdata,...) sum(object$siteLik * newdata)
getdP <- function(el, eig = edQt(), g = 1.0) {
n <- length(eig$values)
res <- .Call("getdPM", eig, as.integer(n), as.double(el), as.double(g))
attr(res, "dim") <- c(length(g), length(el))
res
}
# version without transformation (used for vcov)
getdP2 <- function(el, eig = edQt(), g = 1.0) {
n <- length(eig$values)
res <- .Call("getdPM2", eig, as.integer(n), as.double(el), as.double(g))
attr(res, "dim") <- c(length(g), length(el))
res
}
getP <- function(el, eig = edQt(), g = 1.0) {
n <- length(eig$values)
res <- .Call("getPM", eig, as.integer(n), as.double(el), as.double(g))
attr(res, "dim") <- c(length(g), length(el))
res
}
#' @rdname pml.fit
#' @export
lli <- function(data, tree = NULL, ...) {
contrast <- attr(data, "contrast")
nr <- attr(data, "nr")
nc <- attr(data, "nc")
nco <- as.integer(dim(contrast)[1])
if (!is.null(tree)) data <- subset(data, tree$tip.label)
.Call("invSites", data, as.integer(nr), as.integer(nc), contrast,
as.integer(nco))
}
#' @rdname pml.fit
#' @export
edQt <- function(Q = c(1, 1, 1, 1, 1, 1), bf = c(0.25, 0.25, 0.25, 0.25)) {
l <- length(bf)
res <- matrix(0, l, l)
res[lower.tri(res)] <- Q
res <- res + t(res)
res <- res * bf
res2 <- res * rep(bf, each = l)
diag(res) <- -colSums(res)
res <- res / sum(res2)
e <- eigen(res, FALSE)
e$inv <- solve.default(e$vec)
e
}
# some functions to get codon models to work
getScaler <- function(Q = c(1, 1, 1, 1, 1, 1), bf = c(0.25, 0.25, 0.25, 0.25)) {
l <- length(bf)
res <- matrix(0, l, l)
res[lower.tri(res)] <- Q
res <- res + t(res)
res <- res * bf
res2 <- res * rep(bf, each = l)
diag(res) <- -colSums(res)
sum(res2)
}
# eigen value decomposition without scaling
edQt2 <- function(Q = c(1, 1, 1, 1, 1, 1), bf = c(0.25, 0.25, 0.25, 0.25),
scale = 1) {
l <- length(bf)
res <- matrix(0, l, l)
res[lower.tri(res)] <- Q
res <- res + t(res)
res <- res * bf
res2 <- res * rep(bf, each = l)
diag(res) <- -colSums(res)
res <- res / scale
e <- eigen(res, FALSE)
e$inv <- solve.default(e$vec)
e
}
df_freq_codon <- function(bf) {
switch(bf,
equal = 0,
empirical = 60,
F61 = 60,
F3x4 = 9,
F1x4 = 3)
}
#' @rdname pml.fit
#' @export
pml.free <- function() {
.Call("ll_free2")
# rm(.INV, .iind, envir = parent.frame())
}
#' @rdname pml.fit
#' @export
pml.init <- function(data, k = 1L) {
nTips <- length(data)
nr <- attr(data, "nr")
nc <- attr(data, "nc")
.Call("ll_init2", as.integer(nr), as.integer(nTips), as.integer(nc),
as.integer(k))
}
fn.quartet <- function(old.el, eig, bf, dat, g = 1, w = 1, weight, ll.0) {
l <- length(dat[, 1])
ll <- ll.0
res <- vector("list", 2 * l)
tmp1 <- NULL
tmp2 <- NULL
attr(res, "dim") <- c(l, 2)
for (j in 1:l) {
P <- getP(old.el, eig, g[j])
tmp1 <- (dat[[j, 1]] %*% P[[1]]) * (dat[[j, 2]] %*% P[[2]])
tmp2 <- (dat[[j, 3]] %*% P[[3]]) * (dat[[j, 4]] %*% P[[4]])
res[[j, 1]] <- tmp1 * (tmp2 %*% P[[5]])
res[[j, 2]] <- tmp2
ll <- ll + res[[j, 1]] %*% (w[j] * bf)
}
l0 <- sum(weight * log(ll))
list(ll = l0, res = res)
}
rnodes <- function(tree, data, w, g, eig, bf) {
tree <- reorder(tree, "postorder")
data <- getCols(data, tree$tip.label)
q <- length(tree$tip.label)
node <- tree$edge[, 1]
edge <- tree$edge[, 2]
m <- length(edge) + 1 # max(edge)
l <- length(w)
dat <- vector(mode = "list", length = m * l)
dim(dat) <- c(l, m)
tmp <- length(data)
el <- tree$edge.length
P <- getP(el, eig, g)
nr <- as.integer(attr(data, "nr"))
nc <- as.integer(attr(data, "nc"))
node <- as.integer(node - min(node))
edge <- as.integer(edge - 1)
nTips <- as.integer(length(tree$tip.label))
mNodes <- as.integer(max(node) + 1)
contrast <- attr(data, "contrast")
nco <- as.integer(dim(contrast)[1])
for (i in 1:l) dat[i, (q + 1):m] <- .Call("LogLik2", data, P[i, ], nr, nc,
node, edge, nTips, mNodes, contrast,
nco)
parent <- tree$edge[, 1]
child <- tree$edge[, 2]
nTips <- min(parent) - 1
datp <- vector("list", m)
dat2 <- vector("list", m * l)
dim(dat2) <- c(l, m)
for (i in 1:l) {
datp[(nTips + 1)] <- dat[i, (nTips + 1)]
for (j in (m - 1):1) {
if (child[j] > nTips) {
tmp2 <- (datp[[parent[j]]] / (dat[[i, child[j]]] %*% P[[i, j]]))
datp[[child[j]]] <- (tmp2 %*% P[[i, j]]) * dat[[i, child[j]]]
dat2[[i, child[j]]] <- tmp2
}
}
}
assign(".dat", dat, envir = parent.frame(n = 1))
dat2
}
score <- function(fit, transform = TRUE) {
tree <- fit$tree
child <- tree$edge[, 2]
l <- length(child)
sc <- numeric(l)
weight <- as.numeric(fit$weight)
f <- drop(exp(fit$siteLik))
dl <- dl(fit, transform)
dl <- dl / f
sc <- colSums(weight * dl)
F <- crossprod(dl * weight, dl)
names(sc) <- child
dimnames(F) <- list(child, child)
result <- list(sc = sc, F = F)
result
}
# wird noch in partition models verwendet
optim.quartet <- function(old.el, eig, bf, dat, g = 1, w = 1, weight,
ll.0 = weight * 0, control = list(eps = 1e-08,
maxit = 5, trace = 0, tau=1e-8), llcomp = -Inf) {
eps <- 1
iter <- 0
evi <- (t(eig[[3]]) * bf)
tau <- control$tau
while (eps > control$eps && iter < control$maxit) {
tmp <- fn.quartet(old.el = old.el, eig = eig, bf = bf, dat = dat,
g = g, w = w, weight = weight, ll.0 = ll.0)
old.ll <- tmp$ll
el1 <- fs(old.el[1], eig, tmp$res[, 1], dat[, 1], weight, g = g, w = w,
bf = bf, ll.0 = ll.0, evi, tau = tau, getA = TRUE, getB = FALSE)
el2 <- fs(old.el[2], eig, el1[[2]], dat[, 2], weight, g = g, w = w,
bf = bf, ll.0 = ll.0, evi, tau = tau, getA = TRUE, getB = FALSE)
el5 <- fs(old.el[5], eig, el2[[2]], tmp$res[, 2], weight, g = g, w = w,
bf = bf, ll.0 = ll.0, evi, tau = tau, getA = FALSE, getB = TRUE)
el3 <- fs(old.el[3], eig, el5[[3]], dat[, 3], weight, g = g, w = w,
bf = bf, ll.0 = ll.0, evi, tau = tau, getA = TRUE, getB = FALSE)
el4 <- fs(old.el[4], eig, el3[[2]], dat[, 4], weight, g = g, w = w,
bf = bf, ll.0 = ll.0, evi, tau = tau, getA = FALSE, getB = FALSE)
old.el[1] <- el1[[1]]
old.el[2] <- el2[[1]]
old.el[3] <- el3[[1]]
old.el[4] <- el4[[1]]
old.el[5] <- el5[[1]]
iter <- iter + 1
ll <- el4[[4]]
eps <- (old.ll - ll) / ll
if (ll < llcomp) return(list(old.el, ll))
old.ll <- ll
}
list(old.el, ll)
}
phangornParseFormula <- function(model) {
parseSide <- function(model) {
model.vars <- list()
while (length(model) == 3 && model[[1]] == as.name("+")) {
model.vars <- c(model.vars, model[[3]])
model <- model[[2]]
}
unlist(rev(c(model.vars, model)))
}
if (!inherits(model, "formula"))
stop("model must be a formula object")
l <- length(model)
varsLHS <- NULL
if (l == 3) {
modelLHS <- model[[2]]
modelRHS <- model[[3]]
varsRHS <- parseSide(modelRHS)
varsRHS <- unlist(lapply(varsRHS, as.character))
varsLHS <- parseSide(modelLHS)
varsLHS <- unlist(lapply(varsLHS, as.character))
}
if (l == 2) {
modelRHS <- model[[2]]
varsRHS <- parseSide(modelRHS)
varsRHS <- unlist(lapply(varsRHS, as.character))
}
list(left = varsLHS, right = varsRHS)
}
fs <- function(old.el, eig, parent.dat, child.dat, weight, g = g, w = w,
bf = bf, ll.0 = ll.0, evi, tau=1e-8, getA = TRUE, getB = TRUE) {
if (old.el < 1e-8) old.el <- 1e-8
lg <- length(parent.dat)
P <- getP(old.el, eig, g)
nr <- as.integer(length(weight))
nc <- as.integer(length(bf))
dad <- .Call("getDAD", parent.dat, child.dat, P, nr, nc)
X <- .Call("getPrep", dad, child.dat, eig[[2]], evi, nr, nc)
.Call("FS4", eig, as.integer(length(bf)), as.double(old.el), as.double(w),
as.double(g), unlist(X), child.dat, dad, as.integer(length(w)), nr,
as.double(weight), as.double(ll.0), as.double(tau),
as.integer(getA), as.integer(getB))
}
optimEdge <- function(tree, data, eig = eig, w = w, g = g, bf = bf, rate = rate,
ll.0 = ll.0, control = pml.control(epsilon = 1e-08,
maxit = 10, trace = 0, tau=1e-8), ...) {
tree <- reorder(tree, "postorder")
nTips <- length(tree$tip.label)
el <- tree$edge.length
tau <- control$tau
tree$edge.length[el < tau] <- tau
oldtree <- tree
k <- length(w)
data <- subset(data, tree$tip.label)
loglik <- pml.fit4(tree, data, bf=bf, g=g, w=w, eig=eig, ll.0=ll.0, ...)
start.ll <- old.ll <- loglik
contrast <- attr(data, "contrast")
contrast2 <- contrast %*% eig[[2]]
evi <- (t(eig[[3]]) * bf)
weight <- attr(data, "weight")
eps <- 1
iter <- 0
treeP <- tree
tree <- reorder(tree)
child <- tree$edge[, 2]
parent <- tree$edge[, 1]
m <- max(tree$edge)
pvec <- integer(m)
pvec[child] <- parent
EL <- numeric(m)
EL[child] <- tree$edge.length
n <- length(tree$edge.length)
nr <- as.integer(length(weight))
nc <- as.integer(length(bf))
nco <- as.integer(nrow(contrast))
lg <- k
ScaleEPS <- 1.0 / 4294967296.0
anc <- Ancestors(tree, 1:m, "parent")
anc0 <- as.integer(c(0L, anc))
while (eps > control$eps && iter < control$maxit) {
EL <- .Call("optE", as.integer(parent), as.integer(child),
as.integer(anc0), eig, evi, EL, w, g, as.integer(nr),
as.integer(nc), as.integer(nTips), as.double(contrast),
as.double(contrast2), nco, data, as.double(weight),
as.double(ll.0), as.double(tau))
iter <- iter + 1
treeP$edge.length <- EL[treeP$edge[, 2]]
newll <- pml.fit4(treeP, data, bf=bf, g=g, w=w, eig=eig, ll.0=ll.0, ...)
eps <- (old.ll - newll) / newll
if (eps < 0) return(list(tree=oldtree, logLik=old.ll))
oldtree <- treeP
# if (control$trace > 1) cat(old.ll, " -> ", newll, "\n")
old.ll <- newll
}
if (control$trace > 0)
cat("optimize edge weights: ", start.ll, "-->", newll, "\n")
list(tree = treeP, logLik = newll, c(eps, iter))
}
pml.move <- function(EDGE, el, data, g=1, w=1, eig=edQt(), k=1, nTips=NULL,
bf=length(levels)) {
node <- EDGE[, 1]
edge <- EDGE[, 2]
nr <- as.integer(attr(data, "nr"))
nc <- as.integer(attr(data, "nc"))
node <- as.integer(node - nTips - 1L)
edge <- as.integer(edge - 1L)
contrast <- attr(data, "contrast")
nco <- as.integer(dim(contrast)[1])
tmp2 <- .Call("PML4", dlist = data, as.double(el), as.double(w), as.double(g),
nr, nc, k, eig, as.double(bf), node, edge, nTips, nco, contrast,
N = as.integer(length(edge)))
return(NULL)
}
readAArate <- function(file) {
tmp <- read.table(system.file(file.path("extdata", file)), col.names = 1:20,
fill = TRUE)
Q <- tmp[1:19, 1:19]
names <- c("a", "r", "n", "d", "c", "q", "e", "g", "h", "i", "l", "k", "m",
"f", "p", "s", "t", "w", "y", "v")
Q <- as.numeric(Q[lower.tri(Q, TRUE)])
bf <- as.numeric(as.character(unlist(tmp[20, ])))
names(bf) <- names
list(Q = Q, bf = bf)
}
# .LG <- readAArate("lg.dat")
# .WAG <- readAArate("wag.dat")
# .Dayhoff <- readAArate("dayhoff-dcmut.dat")
# .JTT <- readAArate("jtt-dcmut.dat")
# .cpREV <- readAArate("cpREV.dat")
# .mtmam <- readAArate("mtmam.dat")
# .mtArt <- readAArate("mtArt.dat")
# save(.LG,.WAG,.Dayhoff,.JTT,.cpREV,.mtmam,.mtArt, file = "sysdata2.rda")
getModelAA <- function(model, bf = TRUE, Q = TRUE, has_gap_state=FALSE) {
model <- match.arg(eval(model), .aamodels)
tmp <- get(paste(".", model, sep = ""), environment(pml))
if(has_gap_state){
tmp$Q <- add_gap_Q_AA(tmp$Q)
tmp$bf <- add_gap_bf_AA(tmp$bf)
}
if (Q) assign("Q", tmp$Q, envir = parent.frame())
if (bf) assign("bf", tmp$bf, envir = parent.frame())
}
guess_model <- function(x){
model <- x$model
type <- attr(x$data, "type")
if(is.null(model)){
bf <- sd(x$bf)>0
Q <- FALSE
if(length(Q)>1) Q <- sd(x$Q)>0
if(type=="DNA"){
if(bf==FALSE && Q==FALSE) model <- "JC"
if(bf==TRUE && Q==FALSE) model <- "F81"
if(bf==TRUE && Q==TRUE) model <- "GTR"
}
else if(bf==FALSE && Q==FALSE){ model <- "Mk"}
else {model <- "UNKNOWN"}
}
if(x$k > 1) {
if(x$site.rate=="free_rate") model <- paste0(model, "+R(", x$k, ")")
else model <- paste0(model, "+G(", x$k, ")")
}
if(x$inv>0) model <- paste0(model, "+I")
model
}
# needs to go in phangorn extra
optEdgeMulti <- function(object, control = pml.control(epsilon = 1e-8,
maxit = 10, trace = 1, tau = 1e-8), ...) {
tree <- object$tree
theta <- object$tree$edge.length
weight <- attr(object$data, "weight")
ll0 <- object$logLik
eps <- 1
iter <- 0
iter2 <- 0
scale <- 1
# l <- length(theta)
while (abs(eps) > control$eps && iter < control$maxit) {
dl <- score(object)
thetaNew <- log(theta) + scale * solve(dl[[2]], dl[[1]]) # + diag(l) * 1e-10
newtheta <- exp(thetaNew)
tree$edge.length <- as.numeric(newtheta)
object <- update(object, tree = tree)
ll1 <- object$logLik
eps <- (ll0 - ll1) / ll1
if (eps < 0) {
newtheta <- theta
scale <- scale / 2
tree$edge.length <- as.numeric(theta)
ll1 <- ll0
iter2 <- iter2 + 1
}
else {
scale <- 1
iter2 <- 0
}
theta <- newtheta
if (iter2 == 0 && control$trace > 0) cat("loglik: ", ll1, "\n")
ll0 <- ll1
if (iter2 == 10) iter2 <- 0
if (iter2 == 0) iter <- iter + 1
}
object <- update(object, tree = tree)
object
}
# add data for internal use parent.frame(n) for higher nestings
# update.pmlNew <- function(object, ..., evaluate = TRUE) {
# call <- object$call
# if (is.null(call))
# stop("need an object with call component")
# extras <- match.call(expand.dots = FALSE)$...
# if (length(extras)) {
# existing <- !is.na(match(names(extras), names(call)))
# for (a in names(extras)[existing]) call[[a]] <- extras[[a]]
# if (any(!existing)) {
# call <- c(as.list(call), extras[!existing])
# call <- as.call(call)
# }
# }
# if (evaluate)
# eval(call, object, parent.frame())
# else call
# }
#' @export
update.pml <- function(object, ...) {
extras <- match.call(expand.dots = FALSE)$...
pmla <- c("tree", "data", "bf", "Q", "inv", "k", "shape", "rate", "model",
"wMix", "llMix", "dnds", "tstv", "scaleQ", "...")
names(extras) <- pmla[pmatch(names(extras), pmla[-length(pmla)])]
call <- object$call
if (length(extras)) {
existing <- !is.na(match(names(extras), names(call)))
for (a in names(extras)[existing]) call[[a]] <- extras[[a]]
if (any(!existing)) {
call <- c(as.list(call), extras[!existing])
call <- as.call(call)
}
}
existing <- match(pmla, names(extras))
updateEig <- FALSE
updateRates <- FALSE
ASC <- object$ASC
site.rate <- object$site.rate
type <- attr(object$data, "type")
if(type=="CODON"){
bf_choice <- object$frequencies
}
if (is.na(existing[1])) tree <- object$tree
else tree <- eval(extras[[existing[1]]], parent.frame())
tree <- reorder(tree, "postorder")
if (is.na(existing[2])) {
data <- object$data
INV <- object$INV
}
else {
data <- eval(extras[[existing[2]]], parent.frame())
ll.0 <- numeric(attr(data, "nr"))
INV <- Matrix(lli(data, tree), sparse = TRUE)
}
nr <- as.integer(attr(data, "nr"))
nc <- as.integer(attr(data, "nc"))
if (is.na(existing[3])) bf <- object$bf
else {
bf <- eval(extras[[existing[3]]], parent.frame())
# check for "character"
if (is.character(bf)) {
bf_choice <- match.arg(bf, c("equal", "empirical", "F1x4", "F3x4", "F61"))
# if(bf_choice %in% c("F1x4", "F3x4", "F61") & type != "CODON")
if (bf_choice == "F3x4" & type != "CODON")
stop("F3x4 not available for this data type")
if (bf_choice == "F1x4" & type != "CODON")
stop("F1x4 not available for this data type")
if (bf_choice == "F61" & type != "CODON")
stop("F61 not available for this data type")
bf <- switch(bf_choice,
equal = rep(1 / nc, nc),
empirical = baseFreq(data),
F61 = baseFreq(data),
F3x4 = F3x4(data),
F1x4 = F1x4(data))
freq_df <- df_freq_codon(bf_choice)
names(bf) <- NULL
}
updateEig <- TRUE
}
if (is.na(existing[4])) Q <- object$Q
else {
Q <- eval(extras[[existing[4]]], parent.frame())
updateEig <- TRUE
}
type <- attr(object$data, "type")
model <- NULL
if (type == "AA") {
if (!is.na(existing[9])) {
model <- match.arg(eval(extras[[existing[9]]], parent.frame()),
.aamodels)
getModelAA(model, bf = is.na(existing[3]), Q = is.na(existing[4]),
has_gap_state = has_gap_state(data))
updateEig <- TRUE
}
else model <- object$model
}
scaleQ <- FALSE
if (type == "CODON") {
if (is.na(existing[12])) dnds <- object$dnds
else {
dnds <- eval(extras[[existing[12]]], parent.frame())
updateEig <- TRUE
}
if (is.na(existing[13])) tstv <- object$tstv
else {
tstv <- eval(extras[[existing[13]]], parent.frame())
updateEig <- TRUE
}
if (!is.na(existing[14])) {
scaleQ <- eval(extras[[existing[14]]], parent.frame())
updateEig <- TRUE
}
if (updateEig){
.syn <- synonymous_subs(code=attr(data, "code"))
.sub <- tstv_subs(code=attr(data, "code"))
Q <- CodonQ(subs = .sub, syn = .syn, tstv = tstv,
dnds = dnds)
}
model <- object$model
}
if (type == "DNA") {
if (!is.na(existing[9])) {
model <- match.arg(eval(extras[[existing[9]]], parent.frame()),
.dnamodels)
}
else model <- object$model
}
if (type == "USER") {
if (!is.na(existing[9])) {
model <- match.arg(eval(extras[[existing[9]]], parent.frame()),
.usermodels)
if(model=="ORDERED") Q <- subsChoice_USER(model, nc)$Q
updateEig <- TRUE
}
else model <- object$model
}
if (is.na(existing[5])) inv <- object$inv
else {
inv <- eval(extras[[existing[5]]], parent.frame())
updateRates <- TRUE
}
if (is.na(existing[6])) k <- object$k
else {
k <- eval(extras[[existing[6]]], parent.frame())
updateRates <- TRUE
}
if (is.na(existing[7])) shape <- object$shape
else {
shape <- eval(extras[[existing[7]]], parent.frame())
updateRates <- TRUE
}
if (is.na(existing[8])) rate <- object$rate
else{
rate <- eval(extras[[existing[8]]], parent.frame())
updateRates <- TRUE
}
wMix <- ifelse(is.na(existing[10]), object$wMix,
eval(extras[[existing[10]]], parent.frame()))
if (is.na(existing[11])) llMix <- object$llMix
else llMix <- eval(extras[[existing[11]]], parent.frame())
levels <- attr(data, "levels")
weight <- attr(data, "weight")
if (updateEig){
if(scaleQ) eig <- edQt2(Q = Q, bf = bf, scale = scaleQ)
else eig <- edQt(Q = Q, bf = bf)
}
else {
eig <- object$eig
# model <- object$model
}
g <- object$g
w <- object$w
if(updateRates){
rw <- rates_n_weights(shape, k, site.rate)
g <- rw[, 1]
w <- rw[, 2]
if (inv > 0){
w <- (1 - inv) * w
g <- g / (1 - inv)
}
# if (wMix > 0) w <- (1 - wMix) * w
g <- g * rate
}
ll.0 <- as.matrix(INV %*% (bf * inv))
if (wMix > 0) ll.0 <- ll.0 + llMix
m <- 1
### play save
kmax <- k
if (any(g < .gEps)) {
for (i in seq_along(g)) {
if (g[i] < .gEps) {
inv <- inv + w[i]
}
}
w <- w[g > .gEps]
g <- g[g > .gEps]
k <- length(w)
}
####
# resll <- matrix(0, nr, k)
nTips <- as.integer(length(tree$tip.label))
data <- subset(data, tree$tip.label)
on.exit(.Call("ll_free2"))
.Call("ll_init2", nr, nTips, nc, as.integer(k))
tmp <- pml.fit(tree, data, bf, shape = shape, k = k, Q = Q,
levels = attr(data, "levels"), inv = inv, rate = rate, g = g, w = w,
eig = eig, INV = INV, ll.0 = ll.0, llMix = llMix, wMix = wMix,
site = TRUE)
df <- ifelse(is.ultrametric(tree), tree$Nnode, length(tree$edge.length))
df <- switch(type,
DNA = df + (k > 1) + (inv > 0) + length(unique(bf)) - 1 +
length(unique(Q)) - 1,
AA = df + (k > 1) + (inv > 0),
CODON = df + (k > 1) + (inv > 0) + length(unique(bf)) - 1 + (dnds != 1)
+ (tstv != 1),
USER = df + (k > 1) + (inv > 0) + length(unique(bf)) - 1 +
length(unique(Q)) - 1)
result <- list(logLik = tmp$loglik, inv = inv, k = kmax, shape = shape,
Q = Q, bf = bf, rate = rate, siteLik = tmp$siteLik,
weight = weight, g = g, w = w, eig = eig, data = data,
model = model, INV = INV, ll.0 = ll.0, tree = tree,
lv = tmp$resll, call = call, df = df, wMix = wMix,
llMix = llMix, ASC=ASC, site.rate=site.rate)
if (type == "CODON") {
result$dnds <- dnds
result$tstv <- tstv
result$frequencies <- bf_choice
}
class(result) <- "pml"
result
}
### for edge length optimization
pml.fit4 <- function(tree, data, bf = rep(1 / length(levels), length(levels)),
inv = 0, g=1, w=1, eig=edQt(), ll.0=NULL,
llMix = NULL, wMix = 0, ..., site = FALSE, ASC = FALSE,
site.rate = "gamma") {
weight <- as.double(attr(data, "weight"))
nr <- as.integer(attr(data, "nr"))
nc <- as.integer(attr(data, "nc"))
nTips <- as.integer(length(tree$tip.label))
k <- length(w)
m <- 1
# if (is.null(ll.0)) {
# ll.0 <- numeric(attr(data, "nr"))
# }
# if (is.null(INV))
# INV <- Matrix(lli(data, tree), sparse = TRUE)
# if (inv > 0)
# ll.0 <- as.matrix(INV %*% (bf * inv))
# if (ASC)
# ll.0 <- as.matrix(INV %*% bf)
# if (wMix > 0)
# ll.0 <- ll.0 + llMix
# node <- tree$edge[, 1]
# edge <- tree$edge[, 2]
el <- as.double(tree$edge.length)
node <- as.integer(tree$edge[, 1] - nTips - 1L) # min(node))
edge <- as.integer(tree$edge[, 2] - 1L)
contrast <- attr(data, "contrast")
nco <- as.integer(dim(contrast)[1])
siteLik <- .Call("PML4", dlist = data, el, as.double(w), as.double(g), nr, nc,
k, eig, as.double(bf), node, edge, nTips, nco, contrast,
N = as.integer(length(edge)))
if (inv > 0){
ind <- which(ll.0 > 0)
siteLik[ind] <- log(exp(siteLik[ind]) + ll.0[ind])
}
# if (!is.null(ll.0)) siteLik[ind] <- log(exp(siteLik[ind]) + ll.0[ind])
# if (wMix > 0) siteLik <- log(exp(siteLik) * (1 - wMix) + llMix)
resll <- exp(siteLik)
if (wMix > 0) siteLik <- log(exp(siteLik) * wMix + llMix)
loglik <- sum(weight * siteLik)
if (ASC) {
ind <- seq_len(nc)
p0 <- sum(exp(siteLik[ind]))
if(p0 >= 1) stop("Error Mkv")
loglik <- loglik - sum(weight) * log(1 - p0)
}
if (!site) return(loglik)
return(list(loglik = loglik, siteLik = siteLik, resll=resll))
}
#' Internal maximum likelihood functions.
#'
#' These functions are internally used for the likelihood computations in
#' \code{pml} or \code{optim.pml}.
#'
#' These functions are exported to be used in different packages so far only in
#' the package coalescentMCMC, but are not intended for end user. Most of the
#' functions call C code and are far less forgiving if the import is not what
#' they expect than \code{pml}.
#'
#' @param tree A phylogenetic \code{tree}, object of class \code{phylo}.
#' @param data An alignment, object of class \code{phyDat}.
#' @param bf Base frequencies.
#' @param shape Shape parameter of the gamma distribution.
#' @param k Number of intervals of the discrete gamma distribution.
#' @param Q A vector containing the lower triangular part of the rate matrix.
#' @param levels The alphabet used e.g. c("a", "c", "g", "t") for DNA
#' @param inv Proportion of invariable sites.
#' @param rate Rate.
#' @param g vector of quantiles (default is NULL)
#' @param w vector of probabilities (default is NULL)
#' @param eig Eigenvalue decomposition of Q
#' @param INV Sparse representation of invariant sites
#' @param ll.0 default is NULL
#' @param llMix default is NULL
#' @param wMix default is NULL
#' @param \dots Further arguments passed to or from other methods.
#' @param site return the log-likelihood or vector of sitewise likelihood
#' values
#' @param ASC ascertainment bias correction (ASC), allows to estimate models
#' like Lewis' Mkv.
#' @param site.rate Indicates what type of gamma distribution to use. Options
#' are "gamma" approach of Yang 1994 (default), "gamma_quadrature" after the
#' Laguerre quadrature approach of Felsenstein 2001 and "freerate".
## or "lognormal" after a lognormal quadrature approach.
#' @return \code{pml.fit} returns the log-likelihood.
#' @author Klaus Schliep \email{klaus.schliep@@gmail.com}
#' @seealso \code{\link{pml}, \link{pml_bb}, \link{pmlPart}, \link{pmlMix}}
#' @references Felsenstein, J. (1981) Evolutionary trees from DNA sequences: a
#' maximum likelihood approach. \emph{Journal of Molecular Evolution},
#' \bold{17}, 368--376.
#' @examples
#' data(Laurasiatherian)
#' tree <- NJ(dist.ml(Laurasiatherian))
#' bf <- rep(0.25, 4)
#' eig <- edQt()
#' pml.init(Laurasiatherian)
#' pml.fit(tree, Laurasiatherian, bf=bf, eig=eig)
#' pml.free()
#' pml(tree, Laurasiatherian) |> logLik()
#' @keywords cluster
#' @rdname pml.fit
#' @export pml.fit
pml.fit <- function(tree, data, bf = rep(1 / length(levels), length(levels)),
shape = 1, k = 1, Q = rep(1, length(levels) *
(length(levels) - 1) / 2),
levels = attr(data, "levels"), inv = 0, rate = 1, g = NULL,
w = NULL, eig = NULL, INV = NULL, ll.0 = NULL, llMix = NULL,
wMix = 0, ..., site = FALSE, ASC = FALSE,
site.rate = "gamma") {
weight <- as.double(attr(data, "weight"))
nr <- as.integer(attr(data, "nr"))
nc <- as.integer(attr(data, "nc"))
nTips <- as.integer(length(tree$tip.label))
k <- as.integer(k)
m <- 1
if (is.null(eig))
eig <- edQt(bf = bf, Q = Q)
if(is.null(g) | is.null(w)){
rw <- rates_n_weights(shape, k, site.rate)
g <- rw[, 1]
w <- rw[, 2]
if (inv > 0){
w <- (1 - inv) * w
g <- g / (1 - inv)
}
# if (wMix > 0) w <- (1 - wMix) * w
g <- g * rate
}
if (any(g < .gEps)) {
for (i in seq_along(g)) {
if (g[i] < .gEps) {
inv <- inv + w[i]
}
}
w <- w[g > .gEps]
g <- g[g > .gEps]
# kmax <- k
k <- length(w)
}
if (is.null(INV))
INV <- Matrix(lli(data, tree), sparse = TRUE)
if (is.null(ll.0)) {
ll.0 <- numeric(attr(data, "nr"))
}
if (inv > 0) ll.0 <- as.matrix(INV %*% (bf * inv))
# Notwendig??
if (ASC) ll.0 <- as.matrix(INV %*% bf)
# if (wMix > 0) ll.0 <- ll.0 + llMix
node <- tree$edge[, 1]
edge <- tree$edge[, 2]
# root <- as.integer(node[length(node)])
el <- as.double(tree$edge.length)
node <- as.integer(node - nTips - 1L) # min(node))
edge <- as.integer(edge - 1L)
contrast <- attr(data, "contrast")
nco <- as.integer(dim(contrast)[1])
resll <- .Call("PML0", dlist = data, el, as.double(g), nr, nc, k, eig,
as.double(bf), node, edge, nTips, nco, contrast,
N = as.integer(length(edge)))
sca <- .Call("rowMax", resll, length(weight), as.integer(k)) + 1
# nr statt length(weight)
lll <- resll - sca
lll <- exp(lll)
lll <- as.vector(lll %*% w)
if (inv > 0){
ind <- which(ll.0 > 0) # automatic in INV gespeichert
lll[ind] <- lll[ind] + exp(log(ll.0[ind]) - sca[ind])
}
siteLik <- log(lll) + sca
resll2 <- exp(siteLik)
# needs to change
# if (wMix > 0) siteLik <- log(exp(siteLik) * (1 - wMix) + llMix)
if (wMix > 0) siteLik <- log(exp(siteLik) * wMix + llMix)
loglik <- sum(weight * siteLik)
if (ASC) {
ind <- seq_len(nc)
p0 <- sum(exp(log(lll[ind]) + sca[ind]))
loglik <- loglik - sum(weight) * log(1 - p0)
}
if (!site) return(loglik)
resll <- exp(resll)
return(list(loglik=loglik, siteLik=siteLik, resll=resll2, resll2=resll))
}
### @param optF3x4 Logical value indicating if codon frequencies are estimated
### for the F3x4 model
#' Likelihood of a tree.
#'
#' \code{pml} computes the likelihood of a phylogenetic tree given a sequence
#' alignment and a model. \code{optim.pml} optimizes the different model
#' parameters. For a more user-friendly interface see \code{\link{pml_bb}}.
#'
#' Base frequencies in \code{pml} can be supplied in different ways.
#' For amino acid they are usually defined through specifying a model, so the
#' argument bf does not need to be specified. Otherwise if \code{bf=NULL},
#' each state is given equal probability. It can be a numeric vector given the
#' frequencies. Last but not least \code{bf} can be string "equal", "empirical"
#' and for codon models additionally "F3x4".
#'
#' The topology search uses a nearest neighbor interchange (NNI) and the
#' implementation is similar to phyML. The option model in pml is only used
#' for amino acid models. The option model defines the nucleotide model which
#' is getting optimized, all models which are included in modeltest can be
#' chosen. Setting this option (e.g. "K81" or "GTR") overrules options optBf
#' and optQ. Here is a overview how to estimate different phylogenetic models
#' with \code{pml}: \tabular{lll}{ model \tab optBf \tab optQ \cr Jukes-Cantor
#' \tab FALSE \tab FALSE \cr F81 \tab TRUE \tab FALSE \cr symmetric \tab FALSE
#' \tab TRUE \cr GTR \tab TRUE \tab TRUE } Via model in optim.pml the following
#' nucleotide models can be specified: JC, F81, K80, HKY, TrNe, TrN, TPM1, K81,
#' TPM1u, TPM2, TPM2u, TPM3, TPM3u, TIM1e, TIM1, TIM2e, TIM2, TIM3e, TIM3,
#' TVMe, TVM, SYM and GTR. These models are specified as in Posada (2008).
#'
#' So far 17 amino acid models are supported ("WAG", "JTT", "LG", "Dayhoff",
#' "cpREV", "mtmam", "mtArt", "MtZoa", "mtREV24", "VT","RtREV", "HIVw", "HIVb",
#' "FLU", "Blosum62", "Dayhoff_DCMut" and "JTT_DCMut") and additionally rate
#' matrices and amino acid frequencies can be supplied.
#'
#' It is also possible to estimate codon models (e.g. YN98), for details see
#' also the chapter in vignette("phangorn-specials").
#'
#' If the option 'optRooted' is set to TRUE than the edge lengths of rooted
#' tree are optimized. The tree has to be rooted and by now ultrametric!
#' Optimising rooted trees is generally much slower.
#'
#' If \code{rearrangement} is set to \code{stochastic} a stochastic search
#' algorithm similar to Nguyen et al. (2015). and for \code{ratchet} the
#' likelihood ratchet as in Vos (2003). This should helps often to find better
#' tree topologies, especially for larger trees.
#'
#' @aliases pml
#' @param tree A phylogenetic \code{tree}, object of class \code{phylo}.
#' @param data An alignment, object of class \code{phyDat}.
#' @param bf Base frequencies (see details).
#' @param Q A vector containing the lower triangular part of the rate matrix.
#' @param inv Proportion of invariable sites.
#' @param k Number of intervals of the discrete gamma distribution.
#' @param shape Shape parameter of the gamma distribution.
#' @param rate Rate.
#' @param model allows to choose an amino acid models or nucleotide model, see
#' details.
#' @param site.rate Indicates what type of gamma distribution to use. Options
#' are "gamma" approach of Yang 1994 (default), ""gamma_quadrature"" after the
#' Laguerre quadrature approach of Felsenstein 2001 or "freerate".
## or "lognormal" after a lognormal
#' @param object An object of class \code{pml}.
#' @param optNni Logical value indicating whether topology gets optimized (NNI).
#' @param optBf Logical value indicating whether base frequencies gets
#' optimized.
#' @param optQ Logical value indicating whether rate matrix gets optimized.
#' @param optInv Logical value indicating whether proportion of variable size
#' gets optimized.
#' @param optGamma Logical value indicating whether gamma rate parameter gets
#' optimized.
#' @param optEdge Logical value indicating the edge lengths gets optimized.
#' @param optRate Logical value indicating the overall rate gets optimized.
#' @param optRooted Logical value indicating if the edge lengths of a rooted
#' tree get optimized.
#' @param ratchet.par search parameter for stochastic search
#' @param rearrangement type of tree tree rearrangements to perform, one of
#' "none", "NNI", "stochastic" or "ratchet"
#' @param control A list of parameters for controlling the fitting process.
#' @param subs A (integer) vector same length as Q to specify the optimization
#' of Q
#' @param x So far only an object of class \code{modelTest}.
#' @param ASC ascertainment bias correction (ASC), allows to estimate models
#' like Lewis' Mkv.
#' @param \dots Further arguments passed to or from other methods.
#' @return \code{pml} or \code{optim.pml} return a list of class \code{pml},
#' some are useful for further computations like \item{tree}{the phylogenetic
#' tree.} \item{data}{the alignment.} \item{logLik}{Log-likelihood of the
#' tree.} \item{siteLik}{Site log-likelihoods.} \item{weight}{Weight of the
#' site patterns.}
#' @author Klaus Schliep \email{klaus.schliep@@gmail.com}
#' @seealso \code{\link{pml_bb}}, \code{\link{bootstrap.pml}},
#' \code{\link{modelTest}}, \code{\link{pmlPart}}, \code{\link{pmlMix}},
#' \code{\link[ape]{plot.phylo}}, \code{\link{SH.test}},
#' \code{\link{ancestral.pml}}
#' @references Felsenstein, J. (1981) Evolutionary trees from DNA sequences: a
#' maximum likelihood approach. \emph{Journal of Molecular Evolution},
#' \bold{17}, 368--376.
#'
#' Felsenstein, J. (2004). \emph{Inferring Phylogenies}. Sinauer Associates,
#' Sunderland.
#'
#' Yang, Z. (2006). \emph{Computational Molecular evolution}. Oxford University
#' Press, Oxford.
#'
#' Adachi, J., P. J. Waddell, W. Martin, and M. Hasegawa (2000) Plastid genome
#' phylogeny and a model of amino acid substitution for proteins encoded by
#' chloroplast DNA. \emph{Journal of Molecular Evolution}, \bold{50}, 348--358
#'
#' Rota-Stabelli, O., Z. Yang, and M. Telford. (2009) MtZoa: a general
#' mitochondrial amino acid substitutions model for animal evolutionary
#' studies. \emph{Mol. Phyl. Evol}, \bold{52(1)}, 268--72
#'
#' Whelan, S. and Goldman, N. (2001) A general empirical model of protein
#' evolution derived from multiple protein families using a maximum-likelihood
#' approach. \emph{Molecular Biology and Evolution}, \bold{18}, 691--699
#'
#' Le, S.Q. and Gascuel, O. (2008) LG: An Improved, General Amino-Acid
#' Replacement Matrix \emph{Molecular Biology and Evolution}, \bold{25(7)},
#' 1307--1320
#'
#' Yang, Z., R. Nielsen, and M. Hasegawa (1998) Models of amino acid
#' substitution and applications to Mitochondrial protein evolution.
#' \emph{Molecular Biology and Evolution}, \bold{15}, 1600--1611
#'
#' Abascal, F., D. Posada, and R. Zardoya (2007) MtArt: A new Model of amino
#' acid replacement for Arthropoda. \emph{Molecular Biology and Evolution},
#' \bold{24}, 1--5
#'
#' Kosiol, C, and Goldman, N (2005) Different versions of the Dayhoff rate
#' matrix - \emph{Molecular Biology and Evolution}, \bold{22}, 193--199
#'
#' L.-T. Nguyen, H.A. Schmidt, A. von Haeseler, and B.Q. Minh (2015) IQ-TREE: A
#' fast and effective stochastic algorithm for estimating maximum likelihood
#' phylogenies. \emph{Molecular Biology and Evolution}, \bold{32}, 268--274.
#'
#' Vos, R. A. (2003) Accelerated Likelihood Surface Exploration: The Likelihood
#' Ratchet. \emph{Systematic Biology}, \bold{52(3)}, 368--373
#'
#' Yang, Z., and R. Nielsen (1998) Synonymous and nonsynonymous rate variation
#' in nuclear genes of mammals. \emph{Journal of Molecular Evolution},
#' \bold{46}, 409-418.
#'
#' Lewis, P.O. (2001) A likelihood approach to estimating phylogeny from
#' discrete morphological character data. \emph{Systematic Biology} \bold{50},
#' 913--925.
#' @keywords cluster
#' @importFrom Matrix Matrix
#' @examples
#'
#' example(NJ)
#' # Jukes-Cantor (starting tree from NJ)
#' fitJC <- pml(tree, Laurasiatherian)
#' # optimize edge length parameter
#' fitJC <- optim.pml(fitJC)
#' fitJC
#'
#' \dontrun{
#' # search for a better tree using NNI rearrangements
#' fitJC <- optim.pml(fitJC, optNni=TRUE)
#' fitJC
#' plot(fitJC$tree)
#'
#' # JC + Gamma + I - model
#' fitJC_GI <- update(fitJC, k=4, inv=.2)
#' # optimize shape parameter + proportion of invariant sites
#' fitJC_GI <- optim.pml(fitJC_GI, optGamma=TRUE, optInv=TRUE)
#' # GTR + Gamma + I - model
#' fitGTR <- optim.pml(fitJC_GI, rearrangement = "stochastic",
#' optGamma=TRUE, optInv=TRUE, model="GTR")
#' }
#'
#'
#' # 2-state data (RY-coded)
#' dat <- acgt2ry(Laurasiatherian)
#' fit2ST <- pml(tree, dat)
#' fit2ST <- optim.pml(fit2ST,optNni=TRUE)
#' fit2ST
#' # show some of the methods available for class pml
#' methods(class="pml")
#'
#' @rdname pml
#' @export pml
pml <- function(tree, data, bf = NULL, Q = NULL, inv = 0, k = 1, shape = 1,
rate = 1, model = NULL, site.rate = "gamma", ASC = FALSE, ...) {
call <- match.call()
extras <- match.call(expand.dots = FALSE)$...
pmla <- c("wMix", "llMix", "dnds", "tstv", "w", "g")
existing <- match(pmla, names(extras))
wMix <- ifelse(is.na(existing[1]), 0,
eval(extras[[existing[1]]], parent.frame()))
# llMix <- ifelse(is.na(existing[2]), 0,
# eval(extras[[existing[2]]], parent.frame()))
llMix <- 0
if(!is.na(existing[2])) llMix <- eval(extras[[existing[2]]], parent.frame())
dnds <- tstv <- 1
dnds <- ifelse(is.na(existing[3]), 1,
eval(extras[[existing[3]]], parent.frame()))
tstv <- ifelse(is.na(existing[4]), 1,
eval(extras[[existing[4]]], parent.frame()))
w <- g <- NULL
if(!is.na(existing[5]) & !is.na(existing[6])) {
w <- eval(extras[[existing[5]]], parent.frame())
g <- eval(extras[[existing[6]]], parent.frame())
stopifnot(length(g) == length(w))
k <- length(w)
}
if (!inherits(tree, "phylo")) stop("tree must be of class phylo")
if (is.null(tree$edge.length)) stop("tree must have edge weights")
if (any(duplicated(tree$tip.label))) stop("tree must have unique labels!")
nTips <- as.integer(length(tree$tip.label))
tree <- reorder(tree, "postorder")
if (any(tree$edge.length < 0)) tree <- minEdge(tree)
if (!inherits(data, "phyDat")) stop("data must be of class phyDat")
if (any(is.na(match(tree$tip.label, attr(data, "names")))))
stop("tip labels are not in data")
data <- subset(data, tree$tip.label) # needed
levels <- attr(data, "levels")
type <- attr(data, "type")
if (ASC) {
data <- cbind(constSitePattern(length(tree$tip.label),
names=tree$tip.label, levels=levels, type=type), data)
## compress=FALSE)
attr(data, "weight")[1:attr(data, "nc")] <- 0.0
}
weight <- attr(data, "weight")
nr <- attr(data, "nr")
nc <- as.integer(attr(data, "nc"))
if (type == "AA" & !is.null(model)) {
model <- match.arg(model, .aamodels)
getModelAA(model, bf = is.null(bf), Q = is.null(Q),
has_gap_state = has_gap_state(data))
}
if (type == "CODON") {
.syn <- synonymous_subs(code=attr(data, "code"))
.sub <- tstv_subs(code=attr(data, "code"))
Q <- CodonQ(subs = .sub, syn = .syn, tstv = tstv, dnds = dnds)
if(is.null(bf)) bf_choice <- "equal"
}
if(type=="USER" & !is.null(model)){
model <- match.arg(model, .usermodels)
if(model=="ORDERED") Q <- subsChoice_USER("ORDERED", nc)$Q
}
if (is.null(bf)){
if(has_gap_state(data)){
bf <- baseFreq(data)
bf[-nc] <- (1 - bf[nc]) / (nc-1)
} else bf <- rep(1 / nc, nc)
}
if (is.character(bf)) {
bf_choice <- match.arg(bf, c("equal", "empirical", "F1x4", "F3x4", "F61"))
if (bf_choice == "F3x4" & type != "CODON")
stop("F3x4 not available for this data type")
if (bf_choice == "F1x4" & type != "CODON")
stop("F1x4 not available for this data type")
if (bf_choice == "F61" & type != "CODON")
stop("F61 not available for this data type")
bf <- switch(bf_choice,
equal = rep(1 / length(levels), length(levels)),
empirical = baseFreq(data),
F61 = baseFreq(data),
F3x4 = F3x4(data),
F1x4 = F1x4(data))
names(bf) <- NULL
}
if (type == "CODON") freq_df <- df_freq_codon(bf_choice)
if (is.null(Q))
Q <- rep(1, length(levels) * (length(levels) - 1) / 2)
m <- 1
eig <- edQt(bf = bf, Q = Q)
if(is.null(g) | is.null(w)){
if(site.rate=="free_rate"){
w <- rep(1/k, k)
g <- rep(1, k)
}
else{
rw <- rates_n_weights(shape, k, site.rate)
g <- rw[, 1]
w <- rw[, 2]
}
if (inv > 0){
w <- (1 - inv) * w
g <- g / (1 - inv)
}
# if (wMix > 0) w <- (1 - wMix) * w
g <- g * rate
}
inv0 <- inv
kmax <- k
if (any(g < .gEps)) {
for (i in seq_along(g)) {
if (g[i] < .gEps) {
inv <- inv + w[i]
}
}
w <- w[g > .gEps]
g <- g[g > .gEps]
k <- length(w)
}
INV <- Matrix(lli(data, tree), sparse = TRUE)
ll.0 <- as.matrix(INV %*% (bf * inv))
if(ASC) ll.0 <- as.matrix(INV %*% rep(1, length(bf)))
# if (wMix > 0) ll.0 <- ll.0 + llMix
nr <- as.integer(attr(data, "nr"))
on.exit(.Call("ll_free2"))
.Call("ll_init2", nr, nTips, nc, as.integer(k))
tmp <- pml.fit(tree, data, bf, shape = shape, k = k, Q = Q,
levels = attr(data, "levels"), inv = inv, rate = rate, g = g, w = w,
eig = eig, INV = INV, ll.0 = ll.0, llMix = llMix, wMix = wMix, site = TRUE,
ASC=ASC, site.rate = site.rate)
df <- ifelse(is.ultrametric(tree), tree$Nnode, length(tree$edge.length))
df <- switch(type,
DNA = df + (kmax > 1) + (inv0 > 0) + length(unique(bf)) - 1 +
length(unique(Q)) - 1,
AA = df + (kmax > 1) + (inv0 > 0),
CODON = df + (kmax > 1) + (inv0 > 0) + freq_df + (dnds!=1) + (tstv!=1),
USER = df + (kmax > 1) + (inv0 > 0) + length(unique(bf)) - 1 +
length(unique(Q)) - 1)
result <- list(logLik = tmp$loglik, inv = inv, k = kmax, shape = shape,
Q = Q, bf = bf, rate = rate, siteLik = tmp$siteLik, weight = weight,
g = g, w = w, eig = eig, data = data, model = model, INV = INV,
ll.0 = ll.0, tree = tree, lv = tmp$resll, call = call, df = df, wMix = wMix,
llMix = llMix, ASC=ASC, site.rate=site.rate)
if (type == "CODON") {
result$dnds <- dnds
result$tstv <- tstv
result$frequencies <- bf_choice
}
class(result) <- "pml"
result
}
# removed INV=NULL
optimRooted <- function(tree, data, bf, g, w, eig, ll.0,
control = pml.control(epsilon = 1e-08, maxit = 25,
trace = 0), ...) {
nTips <- as.integer(length(tree$tip.label))
k <- length(w)
tau <- control$tau / 2
# optimising rooted triplets
optRoot0 <- function(t, tree, data, g, w, eig, bf, ll.0, ...) {
l <- length(tree$edge.length)
tree$edge.length[1:(l - 1)] <- tree$edge.length[1:(l - 1)] + t
tree$edge.length[l] <- tree$edge.length[l] - t
loglik <- pml.fit4(tree, data, bf=bf, g=g, w=w, eig=eig, ll.0=ll.0, ...)
loglik
}
# optim edges leading to the root
# add tau == t ???
optRoot2 <- function(t, tree, data, g, w, eig, bf, ll.0, ...) {
tree$edge.length <- tree$edge.length + t
loglik <- pml.fit4(tree, data, bf=bf, g=g, w=w, eig=eig, ll.0=ll.0, ...)
loglik
}
# scale whole tree
scaleEdges <- function(tree, data, tau = 1e-8, ...) {
fn <- function(t, tree, data, ...) {
tree$edge.length <- tree$edge.length * t
pml.fit4(tree, data, ...)
}
min_scaler <- max(.25, tau / min(tree$edge.length) )
min_scaler <- min(min_scaler, 1)
# if(min_scaler>1) browser()
optimize(f = fn, interval = c(min_scaler, 4), tree = tree, data = data, ...,
maximum = TRUE, tol = .00001)
}
# ensure that each edge is at least tau long
# tips have the same height
tree <- minEdge(tree, 2*tau)
parent <- tree$edge[, 1]
child <- tree$edge[, 2]
anc <- Ancestors(tree, 1:max(tree$edge), "parent")
sibs <- Siblings(tree, 1:max(tree$edge))
allKids <- cvector <- allChildren(tree)
rootNode <- getRoot(tree)
child2 <- orderNNI(tree, nTips) # (cvector, rootNode, nTips, TRUE)
lengthList <- edgeList <- vector("list", max(tree$edge))
for (i in tree$edge[, 2]) {
pa <- anc[i]
kids <- sibs[[i]]
if (pa != rootNode) {
edgeList[[i]] <- cbind(pa, c(anc[pa], kids))
lengthList[[i]] <- c(pa, kids)
}
else {
edgeList[[i]] <- cbind(pa, kids)
lengthList[[i]] <- kids
}
}
treeList <- vector("list", max(child2))
for (i in child2) {
pa <- anc[i]
kids <- allKids[[i]]
treeList[[i]] <- cbind(i, c(kids, pa))
}
ll <- pml.fit4(tree, data, bf=bf, eig=eig, ll.0=ll.0, w=w, g=g, ...)
start.ll <- ll
eps <- 10
iter <- 1
EL <- numeric(max(tree$edge))
EL[tree$edge[, 2]] <- tree$edge.length
if(is.ultrametric(tree)){
tmp <- scaleEdges(tree, data, tau=tau, bf=bf, ll.0=ll.0,
eig=eig, w=w, g=g, ...)
# if(control$trace>2)cat("scale", tmp[[2]], "\n")
if(tmp[[2]]>ll){
t <- tmp[[1]]
tree$edge.length <- tree$edge.length * t
}
}
el <- tree$edge.length
EL[tree$edge[, 2]] <- tree$edge.length
ll2 <- pml.fit4(tree, data, bf=bf, eig=eig, ll.0=ll.0, w=w, g=g, ...)
tmptree <- tree
while (eps > control$eps && iter < control$maxit) {
ll2 <- pml.fit4(tree, data, bf=bf, eig=eig, ll.0=ll.0, w=w, g=g, ...)
loli <- rootNode
children <- allKids[[rootNode]]
kidsEl <- EL[children]
minEl <- min(kidsEl)
kidsEl <- kidsEl - minEl
tmptree$edge <- cbind(rootNode, children)
tmptree$edge.length <- kidsEl
t <- optimize(f = optRoot2, interval = c(tau, 3), tmptree, data = data,
g=g, w=w, eig=eig, bf=bf, ll.0=ll.0, maximum = TRUE, ...)
optRoot2(t[[1]], tmptree, data = data, g=g, w=w, eig=eig, bf=bf,
ll.0=ll.0, ...)
# if(control$trace>2)cat("optRoot", t[[2]], "\n")
if(t[[2]] > ll2){
ll2 <- t[[2]]
EL[children] <- kidsEl + t[[1]]
tree$edge.length <- EL[tree$edge[, 2]]
}
ll2 <- pml.fit4(tree, data, bf=bf, eig=eig, ll.0=ll.0, w=w, g=g, ...)
for (i in seq_along(child2)) {
dad <- child2[i]
pa <- anc[dad]
while (loli != pa) {
tmpKids <- cvector[[loli]]
tmpEdge <- cbind(loli, tmpKids)
pml.move(tmpEdge, EL[tmpKids], data, g, w, eig, k, nTips, bf)
loli <- anc[loli]
}
pml.move(edgeList[[dad]], EL[lengthList[[dad]]], data, g, w, eig, k,
nTips, bf)
children <- allKids[[dad]]
kidsEl <- EL[children]
minEl <- min(kidsEl)
maxEl <- EL[dad]
EDGE <- treeList[[dad]]
tmptree$edge <- EDGE
tmptree$edge.length <- c(kidsEl, maxEl)
t0 <- optRoot0(0, tmptree, data, g, w, eig, bf, ll.0, ...)
## Additional check
if(c(-minEl + tau < maxEl - tau)) {
t <- optimize(f = optRoot0, interval = c(-minEl + tau, maxEl - tau),
tmptree, data = data, g = g, w = w, eig = eig, bf = bf,
ll.0 = ll.0, maximum = TRUE, ...)
}
# if(control$trace>2) cat("edge", t[[2]], "\n")
if (!is.nan(t[[2]]) & t[[2]] > ll2) {
optRoot0(t[[1]], tmptree, data = data, g = g, w = w, eig = eig, bf = bf,
ll.0 = ll.0, k = k, ...)
EL[children] <- kidsEl + t[[1]]
EL[dad] <- maxEl - t[[1]]
ll2 <- t[[2]]
}
else optRoot0(0, tmptree, data, g, w, eig, bf, ll.0, k, ...)
loli <- dad
}
tree$edge.length <- EL[tree$edge[, 2]]
ll2 <- pml.fit4(tree, data, bf=bf, eig=eig, ll.0=ll.0, w=w, g=g, ...)
eps <- (ll - ll2) / ll2
if (control$trace > 1) cat("optimRooted: ", ll, " -> ", ll2, "\n")
ll <- ll2
iter <- iter + 1
}
if (control$trace > 0)
cat("optimize edge weights: ", start.ll, "-->", ll, "\n")
list(tree = tree, logLik = ll, c(eps = eps, iter = iter))
}
index.nni <- function(ch, cvector, pvector, root) {
p1 <- pvector[ch]
k12 <- cvector[[ch]]
k3 <- cvector[[p1]]
k3 <- k3[k3 != ch]
kids <- c(k12, k3, ch)
parents <- c(ch, ch, p1, p1)
if (p1 != root) {
k4 <- pvector[p1]
kids <- c(kids, k4)
parents <- c(parents, p1)
}
cbind(parents, kids)
}
orderNNI <- function(tree, nTips) {
res <- reorder(tree)$edge[, 2]
res <- res[res > nTips]
res
}
rooted.nni <- function(tree, data, eig, w, g, bf, rate, ll.0, INV, RELL=NULL,
control = pml.control(epsilon = 1e-08, maxit = 25,
trace = 0), aLRT=FALSE, ...) {
# ind0 <- which(ll.0 > 0)
contrast <- attr(data, "contrast")
tree$edge.length[tree$edge.length < 1e-08] <- 1e-08
nTips <- as.integer(length(tree$tip.label))
k <- length(w)
tree <- reorder.phylo(tree, "postorder")
if (!is.rooted(tree)) stop("tree must be rooted")
# if(aLRT){
# support_quartet <- matrix(NA, max(tree$edge), 3)
# }
attr(tree, "order") <- NULL
weight <- attr(data, "weight")
nr <- as.integer(attr(data, "nr"))
nc <- as.integer(attr(data, "nc"))
getEL1 <- function(t, nh) {
el <- numeric(4)
if (nh[1] > nh[2]) {
el[2] <- nh[1] - nh[2]
tnh <- nh[1] + t[1]
}
else {
el[1] <- nh[2] - nh[1]
tnh <- nh[2] + t[1]
}
el[1:2] <- el[1:2] + t[1]
if (tnh > nh[3]) el[3] <- el[3] + tnh - nh[3]
else el[4] <- el[4] - tnh + nh[3]
el[3:4] <- el[3:4] + t[2]
el
}
optRootU <- function(t, tree, data, bf, g, w, eig, ll.0, nh, ...) {
tree$edge.length <- getEL1(t, nh)
pml.fit4(tree, data, bf = bf, eig = eig, ll.0 = ll.0, w = w, g = g, ...)
}
##### eps should be tau
getEL2 <- function(t, nh) {
el <- numeric(5)
eps <- 1e-6
nh12.min <- max(nh[1:2]) + eps
nh123.min <- max(nh12.min, nh[3]) + eps
l1 <- nh[5] - nh123.min - eps
el[5] <- l1 * t[1] + eps
nh123 <- nh[5] - el[5]
l2 <- nh123 - nh12.min - eps
nh12 <- nh12.min + l2 * t[2]
el[1] <- nh12 - nh[1]
el[2] <- nh12 - nh[2]
el[3] <- nh123 - nh[3]
el[4] <- nh123 - nh12
el
}
optEdgeU <- function(t, tree, data, bf, g, w, eig, ll.0, nh, ...) {
tree$edge.length <- getEL2(t, nh)
pml.fit4(tree, data, bf = bf, eig = eig, ll.0 = ll.0, w = w, g = g, ...)
}
child <- tree$edge[, 2]
parent <- tree$edge[, 1]
ll <- pml.fit4(tree, data, bf = bf, eig = eig, ll.0 = ll.0, w = w, g = g, ...)
llstart <- ll
eps <- .00001
iter <- 1
EL <- numeric(max(tree$edge))
EL[tree$edge[, 2]] <- tree$edge.length
change <- numeric(length(parent)) + 1
rootNode <- getRoot(tree)
anc <- Ancestors(tree, 1:max(tree$edge), "parent")
cvector <- allChildren(tree)
sibs <- Siblings(tree, 1:max(tree$edge))
child2 <- orderNNI(tree, nTips)
while (iter < 2) {
ll <- pml.fit4(tree, data, bf=bf, eig=eig, ll.0=ll.0, w=w, g=g, ...)
nh <- nodeHeight(tree)
loli <- rootNode
pa <- rootNode
nchanges <- 0
ind <- 1
i <- 1
tree1 <- tree2 <- tree3 <- tree
for (i in seq_along(child2)) {
ch <- child2[i]
dad <- anc[ch]
if (ch > nTips) {
EL[tree$edge[, 2]] <- tree$edge.length
pa <- ifelse(dad == rootNode, rootNode, anc[dad])
# should avoid unnecessary movements
while (loli != dad && loli != rootNode) {
if (loli == pa) {
tmpKids <- sibs[[dad]]
tmpEdge <- cbind(pa, c(anc[pa], tmpKids))
pml.move(tmpEdge, EL[c(pa, tmpKids)], data, g, w, eig, k, nTips, bf)
# cat("move from pa to dad \n")
loli <- dad
}
else {
# cat("move loli up", loli, "dad", dad, "pa", pa, "ch", ch, "\n")
tmpKids <- cvector[[loli]]
tmpEdge <- cbind(loli, tmpKids)
pml.move(tmpEdge, EL[tmpKids], data, g, w, eig, k, nTips, bf)
loli <- anc[loli]
}
}
if (loli == rootNode && dad != loli) {
# update all nodes
pml.fit4(tree, data, bf=bf, eig=eig, ll.0=ll.0, w=w, g=g, ...)
# cat("move down loli", loli, "dad", dad, "pa", pa, "ch", ch, "\n")
gd <- rev(Ancestors(tree, ch, "all"))
tmpKids <- sibs[[gd[2]]]
tmpEdge <- cbind(rootNode, tmpKids)
pml.move(tmpEdge, EL[tmpKids], data, g, w, eig, k, nTips, bf)
gd <- gd[-1]
while (length(gd) > 1) {
tmpKids <- sibs[[gd[2]]]
tmpEdge <- cbind(gd[1], c(anc[gd[1]], tmpKids))
pml.move(tmpEdge, EL[c(gd[1], tmpKids)], data, g, w, eig,
k, nTips, bf)
gd <- gd[-1]
}
loli <- dad
}
# look into index.nni
X1 <- index.nni(ch, cvector, anc, rootNode)
if (loli != rootNode) {
tree1$edge <- X1
tree1$edge.length <- abs(nh[X1[, 1]] - nh[X1[, 2]])
ll0 <- pml.fit4(tree1, data, bf=bf, eig=eig, ll.0=ll.0, w=w, g=g, ...)
# cat("quartet", ll0, ch, dad, "\n")
}
if (dad == rootNode) {
ll0 <- pml.fit4(tree1, data, bf=bf, eig=eig, ll.0=ll.0, w=w, g=g, ...)
# cat("at root", ll0, ch, dad, "\n")
ind2 <- c(1, 3, 2, 4)
ind3 <- c(3, 2, 1, 4)
X2 <- X3 <- X1
X2[, 2] <- X1[ind2, 2]
X3[, 2] <- X1[ind3, 2]
tree1$edge <- X1
tree2$edge <- X2
tree3$edge <- X3
edge1 <- X1[, 2]
edge1[4] <- dad
res1 <- optim(par = c(.1, .1), optRootU, gr = NULL, tree = tree1,
data = data, nh = nh[X1[, 2]], g = g, w = w, eig = eig, bf = bf,
ll.0 = ll.0, ..., method = "L-BFGS-B",
lower = 1e-8, upper = 5, control = list(fnscale = -1))
res2 <- optim(par = c(.1, .1), optRootU, gr = NULL, tree = tree2,
data = data, nh = nh[X2[, 2]], g = g, w = w, eig = eig, bf = bf,
ll.0 = ll.0, ..., method = "L-BFGS-B",
lower = 1e-8, upper = 5, control = list(fnscale = -1))
res3 <- optim(par = c(.1, .1), optRootU, gr = NULL, tree = tree3,
data = data, nh = nh[X3[, 2]], g = g, w = w, eig = eig, bf = bf,
ll.0 = ll.0, ..., method = "L-BFGS-B",
lower = 1e-8, upper = 5, control = list(fnscale = -1))
ind <- which.max(c(res1[[2]], res2[[2]], res3[[2]]))
# if(aLRT){
# # site like for SH.tmp
# support_quartet[child2[i], ] <- c(res1[[2]], res2[[2]], res3[[2]])
# ind <- 1 # no rearrangements
# }
if (control$trace > 2) cat("root", c(res1[[2]], res2[[2]],
res3[[2]]), "\n")
# optRootU <- function(t, tree, data, bf, g, w, eig, ll.0, nh, ...) {
if (ind == 1) {
ll2 <- res1[[2]]
optRootU(t = res1[[1]], tree = tree1, data = data,
nh = nh[X1[, 2]], g = g, w = w, eig = eig, bf = bf,
ll.0 = ll.0, ...)
tmpEL <- getEL1(res1[[1]], nh[X1[, 2]])
tree <- changeEdgeLength(tree, X1[, 2], tmpEL)
}
if (ind == 2) {
ll2 <- res2[[2]]
optRootU(t = res2[[1]], tree = tree2, data = data,
nh = nh[X2[, 2]], g = g, w = w, eig = eig, bf = bf,
ll.0 = ll.0, ...)
tmpEL <- getEL1(res2[[1]], nh[X2[, 2]])
tree <- changeEdge(tree, X1[c(2, 3), 2])
tree <- changeEdgeLength(tree, X2[, 2], tmpEL)
}
if (ind == 3) {
ll2 <- res3[[2]]
optRootU(t = res3[[1]], tree = tree3, data = data,
nh = nh[X3[, 2]], g = g, w = w, eig = eig, bf = bf,
ll.0 = ll.0, ...)
tmpEL <- getEL1(res3[[1]], nh[X3[, 2]])
tree <- changeEdge(tree, X1[c(1, 3), 2])
tree <- changeEdgeLength(tree, X3[, 2], tmpEL)
}
}
else {
loli <- dad
ind2 <- c(1, 3, 2, 4, 5)
ind3 <- c(3, 2, 1, 4, 5)
X2 <- X3 <- X1
X2[, 2] <- X1[ind2, 2]
X3[, 2] <- X1[ind3, 2]
tree1$edge <- X1
tree2$edge <- X2
tree3$edge <- X3
tt <- c(.3, .5)
res1 <- optim(par = tt, optEdgeU, gr = NULL, tree = tree1, data,
nh = nh[X1[, 2]], g = g, w = w, eig = eig, bf = bf, ll.0 = ll.0,
..., method = "L-BFGS-B", lower = 1e-4,
upper = 1 - 1e-4, control = list(fnscale = -1))
res2 <- optim(par = tt, optEdgeU, gr = NULL, tree = tree2, data,
nh = nh[X2[, 2]], g = g, w = w, eig = eig, bf = bf, ll.0 = ll.0,
..., method = "L-BFGS-B", lower = 1e-4,
upper = 1 - 1e-4, control = list(fnscale = -1))
res3 <- optim(par = tt, optEdgeU, gr = NULL, tree = tree3, data,
nh = nh[X3[, 2]], g = g, w = w, eig = eig, bf = bf, ll.0 = ll.0,
..., method = "L-BFGS-B", lower = 1e-4,
upper = 1 - 1e-4, control = list(fnscale = -1))
ind <- which.max(c(res1[[2]], res2[[2]], res3[[2]]))
# if(aLRT){
# support_quartet[child2[i], ] <- c(res1[[2]], res2[[2]], res3[[2]])
# ind <- 1 # no rearrangements
# }
if (control$trace > 2) cat("edge", ch, ":", c(res1[[2]], res2[[2]],
res3[[2]]), "\n")
ll3 <- max(c(res1[[2]], res2[[2]], res3[[2]]))
if ( (ll3 - 1e-5 * ll3) < ll2) {
loli <- rootNode
ll2 <- pml.fit4(tree, data, bf = bf, k = k, eig = eig, ll.0 = ll.0,
INV = INV, w = w, g = g, ...)
nh <- nodeHeight(tree)
EL[tree$edge[, 2]] <- tree$edge.length
ind <- 0
}
else {
if (ind == 1) {
ll2 <- res1[[2]]
optEdgeU(res1[[1]], tree = tree1, data, nh = nh[X1[, 2]], g = g,
w = w, eig = eig, bf = bf, ll.0 = ll.0, ...)
tmpEL <- getEL2(res1[[1]], nh[X1[, 2]])
tmpE <- X1[, 2]
tmpE[5] <- X1[5, 1]
tree <- changeEdgeLength(tree, tmpE, tmpEL)
}
if (ind == 2) {
ll2 <- res2[[2]]
optEdgeU(res2[[1]], tree = tree2, data, nh = nh[X2[, 2]], g = g,
w = w, eig = eig, bf = bf, ll.0 = ll.0, ...)
tmpEL <- getEL2(res2[[1]], nh[X2[, 2]])
tmpE <- X2[, 2]
tmpE[5] <- X1[5, 1]
tree <- changeEdge(tree, X1[c(2, 3), 2])
tree <- changeEdgeLength(tree, tmpE, tmpEL)
}
if (ind == 3) {
ll2 <- res3[[2]]
optEdgeU(res3[[1]], tree = tree3, data, nh = nh[X3[, 2]], g = g,
w = w, eig = eig, bf = bf, ll.0 = ll.0, ...)
tmpEL <- getEL2(res3[[1]], nh[X3[, 2]])
tmpE <- X3[, 2]
tmpE[5] <- X1[5, 1]
tree <- changeEdge(tree, X1[c(1, 3), 2])
tree <- changeEdgeLength(tree, tmpE, tmpEL)
}
}
}
nh <- nodeHeight(tree)
EL[tree$edge[, 2]] <- tree$edge.length
loli <- dad
if (ind > 1) {
nchanges <- nchanges + 1
anc <- Ancestors(tree, 1:max(tree$edge), "parent")
cvector <- allChildren(tree)
sibs <- Siblings(tree, 1:max(tree$edge))
if(!is.null(RELL)){
siteLik <- pml.fit4(tree, data, bf=bf, eig=eig, ll.0=ll.0, w=w,
g=g, site=TRUE, ...)$siteLik
RELL <- update_rell(RELL, siteLik, tree)
}
}
}
}
# if(aLRT) return(support_quartet)
ll2 <- pml.fit4(tree, data, bf=bf, eig=eig, ll.0=ll.0, w=w, g=g, ...)
eps <- (ll - ll2) / ll2
if (control$trace > 1) cat("optimize topology: ", ll, "-->", ll2,
" NNI moves: ", nchanges, "\n")
ll <- ll2
iter <- iter + 1
}
list(tree = tree, logLik = ll, iter = iter, swap = nchanges, RELL=RELL)
}
updateRates <- function(res, ll, rate, shape, k, inv, wMix, update="rate",
site.rate = "gamma"){
if( is.infinite(res[[2]]) || is.nan(res[[2]])) return(NULL)
if(res[[2]] < ll) return(NULL)
update <- match.arg(update, c("rate", "shape", "inv"))
if(update=="rate") rate <- res[[1]]
if(update=="shape") shape <- res[[1]]
if(update=="inv") inv <- res[[1]]
rw <- rates_n_weights(shape, k, site.rate)
g <- rw[, 1]
w <- rw[, 2]
if (inv > 0){
w <- (1 - inv) * w
g <- g / (1 - inv)
}
# if (wMix > 0) w <- (1 - wMix) * w
g <- g * rate
assign("g", g, envir = parent.frame(n = 1))
assign("w", w, envir = parent.frame(n = 1))
assign("inv", inv, envir = parent.frame(n = 1))
assign("rate", rate, envir = parent.frame(n = 1))
assign("shape", shape, envir = parent.frame(n = 1))
assign("ll", res[[2]], envir = parent.frame(n = 1))
}
# help functions inside optim.pml
.ratchet_fun <- function(tree, data, ...){
weight <- attr(data, "weight")
v <- rep(seq_along(weight), weight)
attr(data, "weight") <- tabulate(sample(v, replace = TRUE),
length(weight))
res <- opt_Edge(tree, data, ...)
ll2 <- res[[2]]
opt_nni(tree, data, iter_max=5, trace=0, ll=ll2, ...)$tree
}
.di2multi2di <- function(tree2, tau, method){
# tree2 <- di2multi(tree, tol = 10 * tau, tip2root = TRUE) # raus
if (!is.binary(tree2)) {
tree2 <- multi2di(tree2)
if(method=="unrooted" & is.rooted(tree2)) tree2 <- unroot(tree2)
tree2 <- minEdge(tree2, 3*tau, method=="ultrametric")
}
attr(tree2, "order") <- NULL
tree2 <- reorder(tree2, "postorder")
tree2
}
.stochastic_fun <- function(tree, dm, tau, method, tip.dates, ratchet.par){
tree <- di2multi(tree, tol = 10 * tau, tip2root = TRUE)
tree <- .di2multi2di(tree, tau, method)
tree <- reorder(tree, "postorder")
nTips <- Ntip(tree)
tree <- rNNI(tree, moves = round(nTips * ratchet.par$prop), n = 1)
if(method=="unrooted") return(tree)
if(method=="ultrametric"){
tree <- nnls.tree(dm, tree)
tree <- midpoint(tree)
}
if(method=="tipdated") tree <- rtt(tree, tip.dates = tip.dates)
tree <- nnls.tree(dm, tree, method = method, tip.dates=tip.dates)
tree <- minEdge(tree, 5*tau, method=="ultrametric")
attr(tree, order) <- NULL
tree <- reorder(tree, "postorder")
tree
}
.updateQBF <- function(object, model, tmp){
nc <- attr(object$data, "nc")
Q <- object$Q
bf <- object$bf
if(!tmp$optQ) Q <- rep(1, (nc*(nc-1L))/2)
if(model=="ORDERED") Q <- tmp$Q
if(!tmp$optBf){
if(has_gap_state(object$data)){
bf <- baseFreq(object$data)
bf[-nc] <- (1 - bf[nc]) / (nc-1)
} else bf <- rep(1 / nc, nc)
}
object <- update(object, Q=Q, bf=bf)
object
}
#' @rdname pml
#' @aliases optim.pml
#' @export
optim.pml <- function(object, optNni = FALSE, optBf = FALSE, optQ = FALSE,
optInv = FALSE, optGamma = FALSE, optEdge = TRUE,
optRate = FALSE, optRooted = FALSE, #optF3x4 = FALSE,
control = pml.control(), model = NULL,
rearrangement = ifelse(optNni, "NNI", "none"),
subs = NULL, ratchet.par = ratchet.control(), ...) {
aLRT <- FALSE
rearrangement <- match.arg(rearrangement,
c("none", "NNI", "ratchet", "stochastic", "multi2di"))
optNni <- ifelse(rearrangement == "none", FALSE, TRUE)
perturbation <- ifelse(rearrangement %in%
c("ratchet", "stochastic", "multi2di"), TRUE, FALSE)
if(rearrangement=="ratchet") fbs <- vector("list", ratchet.par$minit)
extras <- match.call(expand.dots = FALSE)$...
pmla <- c("wMix", "llMix")
wMix <- object$wMix
llMix <- object$llMix
ASC <- object$ASC
site.rate <- object$site.rate
optFreeRate <- FALSE
if(site.rate=="free_rate"){
if(optGamma){
optFreeRate <- TRUE
optGamma <- FALSE
}
}
optModel <- FALSE
if (is.null(model)) model <- object$model
else optModel <- TRUE
if (is.null(llMix)) llMix <- 0
if (!is.null(extras)) {
names(extras) <- pmla[pmatch(names(extras), pmla)]
existing <- match(pmla, names(extras))
if (!is.na(existing[1]))
wMix <- eval(extras[[existing[1]]], parent.frame())
if (!is.na(existing[2]))
llMix <- eval(extras[[existing[2]]], parent.frame())
}
tree <- object$tree
call <- object$call
data <- object$data
addTaxa <- FALSE
trace <- control$trace
tau <- control$tau
method <- "unrooted"
is_ultrametric <- FALSE
timetree <- FALSE
if (is.rooted(tree)) {
if (optRooted == FALSE && optEdge == TRUE) {
tree <- unroot(tree)
attr(tree, "order") <- NULL
tree <- reorder(tree, "postorder")
warning("I unrooted the tree", call. = FALSE)
}
else{
is_ultrametric <- is.ultrametric(tree, option=2)
if(!is_ultrametric) {
timetree <- TRUE
method <- "tipdated"
tip.dates <- node.depth.edgelength(tree)[seq_len(Ntip(tree))]
tip.dates <- tip.dates - min(tip.dates)
} else {
method <- "ultrametric"
}
}
}
if(optRooted == FALSE && optEdge == TRUE){
# rescale tree if edges are likely too long
pscore <- fitch(tree, data) / sum(attr(data, "weight"))
if(sum(tree$edge.length) > 3*pscore)
tree$edge.length <- tree$edge.length * 3*pscore / sum(tree$edge.length)
}
if (optNni) {
if(!timetree){
mapping <- map_duplicates(data)
if (!is.null(mapping)) {
orig.data <- data
addTaxa <- TRUE
tree <- drop.tip(tree, mapping[, 1])
if(method=="unrooted") tree <- unroot(tree)
attr(tree, "order") <- NULL
tree <- reorder(tree, "postorder")
}
}
if (!is.binary(tree)) tree <- multi2di(tree)
optEdge <- TRUE
}
if (length(tree$tip.label) < (3 + !optRooted)) {
optNni <- FALSE
perturbation <- FALSE
}
if (length(tree$tip.label) < (2 + !optRooted)) {
stop("rooted / unrooted tree needs at least 2 / 3 tips")
}
tree <- reorder(tree, "postorder")
if (any(tree$edge.length < tau)) {
tree <- minEdge(tree, tau, is_ultrametric)
object <- update.pml(object, tree = tree)
}
if (optEdge & optRate & !timetree) {
warning("You can't optimize edges and rates at the same time, only edges are optimized!", call. = FALSE)
optRate <- FALSE
}
if (optRooted) {
optEdge <- TRUE
if (!is.rooted(tree)) stop("tree must be rooted")
}
data <- subset(data, tree$tip.label)
type <- attr(data, "type")
if (type == "AA") {
if(!is.null(model)) object <- update(object, model = model)
model <- object$model
}
if (type == "CODON") {
.syn <- synonymous_subs(code=attr(data, "code"))
.sub <- tstv_subs(code=attr(data, "code"))
if (is.null(model)) model <- "codon1"
model <- match.arg(model, c("codon0", "codon1", "codon2", "codon3", "YN98"))
dnds <- object$dnds
tstv <- object$tstv
if (!is.null(model)) {
if (model == "codon0") optQ <- FALSE
else optQ <- TRUE
if (model == "YN98") optBf <- TRUE
}
bf_choice <- object$frequencies
freq_df <- df_freq_codon(bf_choice)
if (bf_choice=="F3x4") {
bf <- F3x4(data)
bf_codon <- bf_by_codon(data)
object <- update.pml(object, bf = bf)
}
}
nr <- as.integer(attr(data, "nr"))
nc <- as.integer(attr(data, "nc"))
if (type == "DNA" & optModel) {
# .optBFQ
tmp <- subsChoice(model, has_gap_state(data))
optQ <- tmp$optQ
if (!optQ) {
Q <- rep(1, (nc*(nc-1L))/2)
object <- update.pml(object, Q = Q)
}
optBf <- tmp$optBf
if (!optBf){
if(has_gap_state(data)){
bf <- baseFreq(data)
bf[-nc] <- (1 - bf[nc]) / (nc-1)
} else bf <- rep(1 / nc, nc)
#bf <- c(0.25, 0.25, 0.25, 0.25)
} else bf <- baseFreq(data)
object <- update.pml(object, bf = bf)
subs <- tmp$subs
}
if (type == "USER" & optModel) {
tmp <- subsChoice_USER(model, nc)
optQ <- tmp$optQ
if (!optQ){
Q <- rep(1, (nc*(nc-1L))/2)
object <- update.pml(object, Q = Q)
}
optBf <- tmp$optBf
if (!optBf){
bf <- rep(1 / nc, nc)
object <- update.pml(object, bf = bf)
}
subs <- tmp$subs
if(model=="ORDERED") {
Q <- tmp$Q
object <- update.pml(object, Q = Q)
}
}
if(optBf && control$statefreq=="empirical" && type != "CODON"){
bf <- baseFreq(data)
object <- update.pml(object, bf = bf)
}
Q <- object$Q
if (is.null(subs) & optQ) subs <- c(seq_len(length(Q) - 1), 0)
bf <- object$bf
eig <- object$eig
inv <- object$inv
k <- object$k
if (k == 1 & optGamma) {
optGamma <- FALSE
message("only one rate class, ignored optGamma")
}
if(ASC==TRUE & optInv==TRUE){
optInv <- FALSE
message('cannot estimate invariant sites and Mkv model, ignored optInv')
}
shape <- object$shape
w <- object$w
g <- object$g
ll0 <- object$logLik
INV <- object$INV
ll.0 <- object$ll.0
rate <- object$rate
ll <- ll0
ll1 <- ll0
opti <- TRUE
RELL <- NULL
if(ratchet.par$rell && perturbation){
RELL <- init_rell(data, B=ratchet.par$bs)
}
nTips <- as.integer(length(tree$tip.label))
on.exit({
tmp <- pml.fit(tree, data, bf, shape = shape, k = k, Q = Q,
levels = attr(data, "levels"), inv = inv, rate = rate,
g = g, w = w, eig = eig, INV = INV, ll.0 = ll.0, llMix = llMix,
wMix = wMix, site = TRUE, ASC=ASC)
if (addTaxa) {
tree <- add.tips(tree, tips = mapping[, 1], where = mapping[, 2],
edge.length = rep(0, nrow(mapping)))
data <- orig.data
if (!is.null(RELL)){
bs <- RELL$bs
for(i in seq_along(bs)){
bs[[i]] <- add.tips(bs[[i]], tips = mapping[, 1],
where = mapping[, 2], edge.length = rep(0, nrow(mapping)))
}
RELL$bs <- bs
}
}
df <- ifelse(optRooted, tree$Nnode, length(tree$edge.length))
dfQ <- ifelse(is.null(subs), length(unique(Q)) - 1, max(subs))
df <- switch(type,
DNA = df + (k > 1) + (optInv | (inv > 0)) + length(unique(bf)) - 1 + dfQ,
AA = df + (k > 1) + (optInv | (inv > 0)) +
optBf * (length(unique(bf)) - 1),
CODON = df + (k > 1) + (optInv | (inv > 0)) + freq_df + (dnds != 1) +
(tstv != 1),
USER = df + (k > 1) + (optInv | (inv > 0)) + length(unique(bf)) - 1 + dfQ)
names(bf) <- NULL
object <- list(logLik = tmp$loglik, inv = inv, k = k, shape = shape,
Q = Q, bf = bf, rate = rate, siteLik = tmp$siteLik,
weight = attr(data, "weight"),
g = g, w = w, eig = eig, data = data, model = model, method=method,
INV = INV, ll.0 = ll.0, tree = tree, lv = tmp$resll, call = call, df = df,
wMix = wMix, llMix = llMix, ASC=ASC, site.rate=site.rate)
if (type == "CODON") {
object$dnds <- dnds
object$tstv <- tstv
object$frequencies <- bf_choice
}
class(object) <- "pml"
extras <- pairlist(bf = bf, Q = Q, inv = inv, shape = shape, rate = rate,
model=model)[c(optBf, optQ, optInv, optGamma, optRate, optModel)]
if (length(extras)) {
existing <- !is.na(match(names(extras), names(call)))
for (a in names(extras)[existing]) call[[a]] <- extras[[a]]
if (any(!existing)) {
call <- c(as.list(call), extras[!existing])
call <- as.call(call)
}
}
object$call <- call
if(!is.null(RELL)){
bs <- RELL$bs
class(bs) <- "multiPhylo"
bs <- .compressTipLabel(bs)
object$bs <- bs
spl <- as.splits(bs)
object$tree <- addConfidences(object$tree, spl)
}
if(rearrangement=="ratchet"){
class(fbs) <- "multiPhylo"
object$abs <- object$bs
object$bs <- fbs
}
pml.free()
return(object)
})
pml.init(data, k)
if (optEdge) {
res <- opt_Edge(tree, data, rooted = optRooted, eig = eig, w = w, g = g,
bf = bf, inv=inv, rate = rate, ll.0 = ll.0, INV = INV,
llMix = llMix, wMix=wMix, ASC=ASC,
control = pml.control(epsilon = 1e-07, maxit = 10, trace = trace,
tau = tau))
if (res[[2]] > ll) {
ll <- res[[2]]
tree <- res[[1]]
}
}
rounds <- 1
while (opti) {
if (optRate) {
res <- optimRate(tree, data, rate = rate, inv = inv,
INV = INV, Q = Q, bf = bf, eig = eig, k = k,
shape = shape, w = w, ll.0 = ll.0)
if (trace > 0)
cat("optimize rate: ", ll, "-->", max(res[[2]], ll), "\n")
updateRates(res, ll, rate, shape, k, inv, wMix, update="rate",
site.rate=site.rate)
}
if (optBf && control$statefreq=="estimated") {
if (type=="CODON" && bf_choice=="F3x4") res <- optimF3x4(tree, data,
bf_codon = bf_codon, inv = inv, Q = Q, w = w, g = g, INV = INV,
rate = rate, k = k, llMix = llMix, ASC=ASC)
else res <- optimBf(tree, data, bf = bf, inv = inv, Q = Q, w = w, g = g,
INV = INV, rate = rate, k = k, llMix = llMix, wMix=wMix, ASC=ASC)
if (trace > 0)
cat("optimize base frequencies: ", ll, "-->", max(res[[2]], ll), "\n")
if (res[[2]] > ll) {
bf <- res[[1]]
eig <- edQt(Q = Q, bf = bf)
if (inv > 0) ll.0 <- as.matrix(INV %*% (bf * inv))
if (wMix > 0) ll.0 <- ll.0 + llMix
ll <- res[[2]]
}
}
if (optQ) {
if (type == "CODON") {
ab <- c(tstv, dnds)
res <- switch(model,
YN98 = optimCodon(tree, data, Q = length(.sub), subs = .sub,
syn = .syn, bf = bf, w = w, g = g, inv = inv,
INV = INV, ll.0 = ll.0, rate = rate, k = k,
ab = log(ab), optK = TRUE, optW = TRUE),
codon1 = optimCodon(tree, data, Q = length(.sub), subs = .sub,
syn = .syn, bf = bf, w = w, g = g, inv = inv,
INV = INV, ll.0 = ll.0, rate = rate, k = k,
ab = log(ab), optK = TRUE, optW = TRUE),
codon2 = optimCodon(tree, data, Q = length(.sub), subs = .sub,
syn = .syn, bf = bf, w = w, g = g, inv = inv,
INV = INV, ll.0 = ll.0, rate = rate, k = k,
ab = log(ab), optK = FALSE, optW = TRUE),
codon3 = optimCodon(tree, data, Q = length(.sub), subs = .sub,
syn = .syn, bf = bf, w = w, g = g, inv = inv,
INV = INV, ll.0 = ll.0, rate = rate, k = k,
ab = log(ab), optK = TRUE, optW = FALSE))
tmp <- res[[5]]
m <- length(tmp)
dnds <- tmp[m]
if (m > 1) tstv <- tmp[1]
}
else{
res <- optimQ(tree, data, Q = Q, subs = subs, bf = bf, w = w, g = g,
inv = inv, INV = INV, ll.0 = ll.0, rate = rate, k = k,
llMix = llMix, wMix=wMix, ASC=ASC)
}
Q <- res[[1]]
eig <- edQt(Q = Q, bf = bf)
if (trace > 0) cat("optimize rate matrix: ", ll, "-->", res[[2]], "\n")
ll <- res[[2]]
}
### start sitewise
if (optInv) {
res <- optimInv(tree, data, inv = inv, INV = INV, Q = Q,
bf = bf, eig = eig, k = k, shape = shape, rate = rate,
llMix = llMix, wMix=wMix)
if (trace > 0)
cat("optimize invariant sites: ", ll, "-->", max(res[[2]], ll), "\n")
updateRates(res, ll, rate, shape, k, inv, wMix, update="inv",
site.rate=site.rate)
ll.0 <- as.matrix(INV %*% (bf * inv))
if (wMix > 0) ll.0 <- ll.0 + llMix
}
if (optGamma) {
res <- optimGamma(tree, data, shape = shape, k = k, inv = inv, INV = INV,
Q = Q, bf = bf, eig = eig, ll.0 = ll.0, rate = rate,
llMix = llMix, wMix=wMix, ASC=ASC)
if (trace > 0)
cat("optimize shape parameter: ", ll, "-->", max(res[[2]], ll), "\n")
updateRates(res, ll, rate, shape, k, inv, wMix, update="shape",
site.rate=site.rate)
}
if (optFreeRate) {
# bis jetzt w nicht optimiert!
tmp_ll <- ll_fr <- ll
eps_fr <- 1e8
iter_fr <- 0
while(eps_fr > control$epsilon & iter_fr < 3){
res <- optimFreeRate(tree, data, g = g, k = k, w = w, inv = inv,
INV = INV, bf = bf, eig = eig,
ll.0 = ll.0, rate = rate)
# scale <- function(tree, g, w){
# blub <- sum(g * w)
# g <- g / blub
# tree$edge.length <- tree$edge.length * blub
# list(tree=tree, g=g)
# }
if(res[[2]] > ll){
# tmp_sc <- scale(tree, res[[1]], w)
g0 <- res[[1]]
blub <- sum(g0 * w)
g <- g0 / blub
tree$edge.length <- tree$edge.length * blub
ll <- res[[2]]
}
res2 <- optimWs(tree, data, w = w, g=g, inv = inv,
INV = INV, bf = bf, eig = eig,
ll.0 = ll.0, rate = rate)
if(res2[[2]] > ll){
w <- res2[[1]]
blub <- sum(g * w)
g <- g / blub
tree$edge.length <- tree$edge.length * blub
ll <- res2[[2]]
}
eps_fr <- ll - ll_fr
ll_fr <- ll
iter_fr <- iter_fr+1
}
if (trace > 0) cat("optimize free rate parameters: ", tmp_ll, "-->",
ll, "\n")
}
### end sitewise
if (optEdge) {
res <- opt_Edge(tree, data, rooted = optRooted, eig = eig, w = w, g = g,
bf = bf, inv=inv, rate = rate, ll.0 = ll.0,
llMix = llMix, wMix=wMix, ASC=ASC,
control = pml.control(epsilon = 1e-08, maxit = 10,
trace = trace, tau = tau))
if (res[[2]] > ll) {
ll <- res[[2]]
tree <- res[[1]]
}
}
epsR <- 1e-8
if (optNni) {
res <- opt_nni(tree, data, rooted=optRooted, iter_max=5, trace=trace,
ll=ll, w = w, g = g, eig = eig, bf = bf, inv=inv,
ll.0 = ll.0, INV = INV, llMix = llMix, wMix=wMix, ASC=ASC,
RELL=NULL,
control = list(eps=1e-08, maxit=3, trace=trace-1, tau=tau))
ll <- res$logLik
tree <- res$tree
swap <- res$swap
rounds <- 1
if (swap == 0) optNni <- FALSE
}
if ( (perturbation == TRUE) && (optNni == FALSE)) {
maxR <- ratchet.par$iter
maxit <- ratchet.par$maxit
minit <- ratchet.par$minit
kmax <- 1
i <- 1
if((rearrangement == "stochastic" || rearrangement == "ratchet") && optRooted){
dm <- dist.ml(data, bf=bf, Q=Q, exclude = "pairwise")
}
for(i in seq_len(maxit)){
if(rearrangement == "stochastic"){
tree2 <- .stochastic_fun(tree, dm, tau, method, tip.dates,
ratchet.par)
} else if(rearrangement == "ratchet"){
tree2 <- .ratchet_fun(tree, data, rooted=optRooted, w = w, g = g,
eig = eig, bf = bf, inv=inv,
rate=rate, ll.0 = ll.0, INV = INV, llMix = llMix,
wMix=wMix, ASC=ASC,
control=list(eps=1e-08, maxit=3, trace=trace-1,
tau=tau))
fbs[[i]] <- tree2
} else if(rearrangement == "multi2di"){
tree2 <- di2multi(tree, tol=10*tau, tip2root=TRUE)
if(any(tabulate(tree2$edge)>3)){
tree2 <- multi2di(tree2)
if(!optRooted) tree2 <- unroot(tree2)
tree2 <- minEdge(tree2, tau)
tree2 <- reorder(tree2, "postorder")
}
#else return(list(tree, ll))
else{
i <- maxit
break()
}
}
res <- opt_Edge(tree2, data, rooted=optRooted, eig=eig, w=w, g=g, bf=bf,
inv=inv, rate=rate, ll.0=ll.0, llMix = llMix, wMix=wMix,
ASC=ASC,
control = pml.control(epsilon = 1e-08, maxit = 10,
trace = trace-1L, tau = tau))
ll2 <- res[[2]]
tree2 <- res[[1]]
swap <- 1
# ll2 <- pml.fit(tree2, data, bf, shape = shape, k = k, Q = Q,
# levels = attr(data, "levels"), inv = inv, rate = rate,
# g = g, w = w, eig = eig, INV = INV, ll.0 = ll.0,
# llMix = llMix, wMix = wMix, site = FALSE, Mkv=Mkv)
res <- opt_nni(tree2, data, rooted=optRooted, iter_max=25, trace=trace,
ll=ll2, w = w, g = g, eig = eig, bf = bf, inv=inv,
rate=rate, ll.0 = ll.0, INV = INV, llMix = llMix,
wMix=wMix, ASC=ASC, RELL=RELL,
control=list(eps=1e-08, maxit=3, trace=trace-1, tau=tau))
if (res$logLik > (ll + epsR)) {
tree <- res$tree
ll <- res$logLik
kmax <- 1
}
else kmax <- kmax + 1
if(!is.null(RELL)) RELL <- res$RELL
if (trace > 0) cat("Ratchet iteration ", i, ", best pscore so far:", ll,
"\n")
if ( (kmax >= maxR) && (i >= minit)) break()
}
optNni <- TRUE
perturbation <- FALSE
rounds <- 1
}
if ( perturbation==FALSE &&
((abs((ll1 - ll) / ll) < control$eps) || rounds > control$maxit)){
# if(aLRT){
# support <-SH_quartet(tree, data, rooted=optRooted, iter_max=1,
# trace=trace,
# ll=ll, w = w, g = g, eig = eig, bf = bf, inv=inv,
# ll.0 = ll.0, INV = INV, llMix = llMix, wMix=wMix, ASC=ASC,
# RELL=NULL,
# control = list(eps=1e-08, maxit=3, trace=trace-1, tau=tau))
# }
opti <- FALSE
}
rounds <- rounds + 1
ll1 <- ll
}
}
indexNNI3 <- function(tree) {
parent <- tree$edge[, 1]
child <- tree$edge[, 2]
ind <- reorder(tree)$edge[, 2]
nTips <- length(tree$tip.label)
ind <- ind[ind > nTips]
# ind <- which(child %in% parent)
Nnode <- tree$Nnode
# a d
# \ /
# e-----f c is closest to root, f is root from subtree
# / \
# b c c(a,b,c,d,e,f)
edgeMatrix <- matrix(0L, (Nnode - 1), 6)
pvector <- integer(max(parent))
pvector[child] <- parent
tips <- !logical(max(parent))
tips[parent] <- FALSE
# cvector <- allCildren(tree)
cvector <- vector("list", max(parent))
for (i in seq_along(parent)) cvector[[parent[i]]] <- c(cvector[[parent[i]]],
child[i])
k <- 1L
for (i in ind) {
f <- pvector[i] # f
ab <- cvector[[i]] # a,b
ind1 <- cvector[[f]] # c,d
cd <- ind1[ind1 != i]
if (pvector[f]) cd <- c(pvector[f], cd) # cd
edgeMatrix[k, 1:6] <- c(ab, cd, i, f)
k <- k + 1L
}
edgeMatrix
}
# EL ausserhalb
index2tree <- function(x, tree, root = length(tree$tip.label) + 1L) {
EL <- numeric(max(tree$edge))
EL[tree$edge[, 2]] <- tree$edge.length
pa <- c(5L, 5L, 6L, 6L, 6L)
ch <- c(1L, 2L, 5L, 4L, 3L)
elind <- c(1L, 2L, 5L, 4L, 6L) # raus
if (x[6L] == root) el <- EL[x[ch]]
else el <- EL[x[elind]]
structure(list(edge = structure(c(x[pa], x[ch]), .Dim = c(5L, 2L)),
edge.length = el, Nnode = 2L), .Names = c("edge", "edge.length",
"Nnode"), class = "phylo", order = "postorder")
}
index2tree2 <- function(x, tree, root = length(tree$tip.label) + 1L) {
EL <- numeric(max(tree$edge))
EL[tree$edge[, 2]] <- tree$edge.length
pa <- c(6L, 6L, 5L, 5L, 5L)
ch <- c(3L, 4L, 6L, 1L, 2L)
elr <- c(3L, 4L, 5L, 1L, 2L)
eln <- c(6L, 4L, 5L, 1L, 2L)
if (x[6L] == root) el <- EL[x[elr]]
else el <- EL[x[eln]]
structure(list(edge = structure(c(x[pa], x[ch]), .Dim = c(5L, 2L)),
edge.length = el, Nnode = 2L),
.Names = c("edge", "edge.length", "Nnode"), class = "phylo",
order = "postorder")
}
# weight, nr, nc, contrast, nco (Reihenfolge beibehalten)
# INV raus, inv rein
# evi, eve, contrast2 ausserhalb definieren
optimQuartet <- function(tree, data, eig, w, g, bf, rate, ll.0, nTips,
weight, nr, nc, contrast, nco, inv=0, llcomp = -Inf,
control = pml.control(epsilon = 1e-08, maxit = 5,
trace = 0, tau = 1e-8), ...) {
el <- tree$edge.length
tree$edge.length[el < 1e-08] <- 1e-08
oldtree <- tree
k <- length(w)
loglik <- pml.quartet(tree, data, bf = bf, g = g, w = w, eig = eig,
ll.0 = ll.0, k = k, nTips = nTips, weight = weight,
inv = inv, nr = nr, nc = nc, contrast = contrast,
nco = nco, ...)
start.ll <- old.ll <- new.ll <- loglik
contrast2 <- contrast %*% eig[[2]]
evi <- (t(eig[[3]]) * bf)
eps <- 1
iter <- 0
child <- tree$edge[, 2]
parent <- tree$edge[, 1]
m <- max(tree$edge)
EL <- tree$edge.length
n <- length(tree$edge.length)
ind.inv <- which(ll.0 > 0)
tau <- control$tau
lg <- k
ScaleEPS <- 1.0 / 4294967296.0
while (eps > control$eps && iter < control$maxit) {
EL <- .Call("optQrtt", as.integer(parent), as.integer(child), eig, evi,
EL, w, g, as.integer(nr), as.integer(nc), as.integer(nTips),
as.double(contrast), as.double(contrast2), nco, data,
as.double(weight), as.double(ll.0), as.double(tau))
iter <- iter + 1
tree$edge.length <- EL # [treeP$edge[,2]]
newll <- pml.quartet(tree, data, bf = bf, g = g, w = w, eig = eig,
ll.0 = ll.0, k = k, nTips = nTips, weight = weight,
inv = inv, nr = nr, nc = nc, contrast = contrast,
nco = nco)
eps <- (old.ll - newll) / newll
if ( (eps < 0) || (newll < llcomp))
return(list(tree = oldtree, logLik = old.ll, c(eps, iter)))
oldtree <- tree # vormals treeP
old.ll <- newll
}
list(tree = tree, logLik = newll, c(eps, iter))
}
# allow weight Matrix or return site likelihood
pml.quartet <- function(tree, data, bf = rep(.25, 4), k = 1, rate = 1, g, w,
eig, ll.0 = NULL, #ind.ll0 = NULL,
inv=0, llMix = NULL,
wMix = 0, nTips, weight, nr, nc, contrast, nco, ...,
site = FALSE, ASC=FALSE) {
if (is.null(ll.0)) {
ll.0 <- numeric(nr)
}
node <- as.integer(tree$edge[, 1] - nTips - 1L) # min(node))
edge <- as.integer(tree$edge[, 2] - 1L)
siteLik <- .Call("PML4", dlist = data, as.double(tree$edge.length),
as.double(w), as.double(g), nr, nc, as.integer(k), eig,
as.double(bf), node, edge, nTips, nco, contrast,
N = as.integer(length(edge)))
# in C 1st line out
if (inv > 0){
ind <- which(ll.0 > 0) # define outside
siteLik[ind] <- log(exp(siteLik[ind]) + ll.0[ind])
}
# if (!is.null(ll.0)) siteLik[ind] <- log(exp(siteLik[ind]) + ll.0[ind])
# if (wMix > 0) siteLik <- log(exp(siteLik) * (1 - wMix) + llMix)
if (wMix > 0) siteLik <- log(exp(siteLik) * wMix + llMix)
loglik <- sum(weight * siteLik)
if (ASC) {
ind <- seq_len(nc)
p0 <- sum(exp(siteLik[ind]))
loglik <- loglik - sum(weight) * log(1 - p0)
}
if(site) return(siteLik)
return(loglik)
}
index2edge <- function(x, root) {
ch <- c(1L, 2L, 5L, 4L, 3L)
elind <- c(1L, 2L, 5L, 4L, 6L)
if (x[6L] == root) el <- x[ch]
else el <- x[elind]
el
}
pml.nni <- function(tree, data, w, g, eig, bf, ll.0, ll, inv, wMix, llMix,
RELL=NULL, aLRT=FALSE, ...) {
k <- length(w)
INDEX <- indexNNI3(tree)
tmpl <- pml.fit4(tree, data, bf=bf, g=g, w=w, eig=eig, inv=inv,
ll.0=ll.0, k=k, wMix=wMix, llMix=llMix, ...)
nr <- as.integer(attr(data, "nr"))
nc <- as.integer(attr(data, "nc"))
weight <- as.numeric(attr(data, "weight"))
contrast <- attr(data, "contrast")
nco <- as.integer(dim(contrast)[1])
# contrast2 <- contrast %*% eig[[2]]
evi <- (t(eig[[3]]) * bf)
nTips <- as.integer(length(tree$tip.label))
m <- dim(INDEX)[1]
# if(aLRT){
# reference <- numeric(m)
# LM <- matrix(0, nr, 3)
# sh_max <- numeric(m)
# }
loglik <- numeric(2 * m)
edgeMatrix <- matrix(0L, 2 * m, 5)
anc <- Ancestors(tree, 1:max(tree$edge), "parent")
loli <- getRoot(tree)
ind1 <- c(1L, 4L, 3L, 2L, 5L) #
ind2 <- c(4L, 2L, 3L, 1L, 5L) #
for (i in 1:m) {
ei <- INDEX[i, ]
tree0 <- index2tree(INDEX[i, ], tree, nTips + 1L)
ch <- ei[5]
pa <- ei[6]
# move up
while (pa != loli) {
tmpr <- match(loli, INDEX[, 5])
treetmp <- index2tree(INDEX[tmpr, ], tree, nTips + 1L)
tmpl <- pml.quartet(treetmp, data, bf = bf, g = g, w = w, eig = eig,
ll.0 = ll.0, k = k, nTips = nTips, weight = weight, inv = inv,
nr = nr, nc = nc, contrast = contrast, nco = nco, wMix=wMix,
llMix=llMix, ...)
loli <- anc[loli]
}
llt0 <- pml.quartet(tree0, data, bf = bf, g = g, w = w, eig = eig,
ll.0 = ll.0, k = k, nTips = nTips, weight = weight,
inv = inv, nr = nr, nc = nc, contrast = contrast,
nco = nco, wMix=wMix, llMix=llMix, ...)
# if(aLRT){
# # not needed
# new0 <- optimQuartet(tree0, data, eig=eig, w=w, g=g, bf=bf,
# rate=rate, ll.0=ll.0, nTips=nTips, weight=weight,
# nr=nr, nc=nc, contrast=contrast, nco=nco, inv=0,
# control = list(epsilon = 1e-08, maxit = 3, trace=0))
# }
tree2 <- tree1 <- tree0
tree1$edge[, 2] <- tree1$edge[ind1, 2]
tree1$edge.length <- tree1$edge.length[ind1]
tree2$edge[, 2] <- tree2$edge[ind2, 2]
tree2$edge.length <- tree2$edge.length[ind2]
new1 <- optimQuartet(tree1, data, eig = eig, w = w, g = g, bf = bf,
ll.0 = ll.0, nTips = nTips, weight = weight, nr = nr,
nc = nc, contrast = contrast, nco = nco, inv=inv,
llcomp = ll + 1e-8, wMix=wMix, llMix=llMix, ...)
new2 <- optimQuartet(tree2, data, eig = eig, w = w, g = g, bf = bf,
ll.0 = ll.0, nTips = nTips, weight = weight, nr = nr,
nc = nc, contrast = contrast, nco = nco, inv=inv,
llcomp = ll + 1e-8, wMix=wMix, llMix=llMix, ...)
# new0$logLik+1e-8)
# if(aLRT){
# llt0 <- pml.quartet(tree0, data, bf = bf, g = g, w = w, eig = eig,
# ll.0 = ll.0, k = k, nTips = nTips, weight = weight,
# inv = inv, nr = nr, nc = nc, contrast = contrast,
# nco = nco, wMix=wMix, llMix=llMix, ...)
# }
loglik[(2 * i) - 1] <- new1$logLik
loglik[(2 * i)] <- new2$logLik
# if(aLRT) reference[i] <- new0$logLik
edgeMatrix[(2 * i) - 1, ] <- new1$tree$edge.length
edgeMatrix[(2 * i), ] <- new2$tree$edge.length
# godown or recompute
if (any (INDEX[i, c(1, 2)] > nTips)) {
tree00 <- index2tree2(INDEX[i, ], tree, nTips + 1L)
tmp3 <- pml.quartet(tree00, data, bf = bf, g = g, w = w, eig = eig,
ll.0 = ll.0, k = k, nTips = nTips, weight = weight, inv = inv,
nr = nr, nc = nc, contrast = contrast, nco = nco, wMix=wMix,
llMix=llMix, ...)
loli <- getRoot(tree00)
}
else tmp3 <- pml.quartet(tree0, data, bf = bf, g = g, w = w, eig = eig,
ll.0 = ll.0, k = k, nTips = nTips, weight = weight, inv = inv,
nr = nr, nc = nc, contrast = contrast, nco = nco, wMix=wMix,
llMix=llMix, ...)
}
swap <- 0
eps0 <- 1e-6
# if(aLRT) {
# L <- cbind(matrix(loglik, ncol = 2L, byrow=TRUE), reference)
# return(list(ll=L, ll0=ll))
# }
# return loglik, loli for approx LRT
candidates <- loglik > ll + eps0
INDEX2 <- t(apply(INDEX, 1, index2edge, root = getRoot(tree)))
while (any(candidates)) {
ind <- which.max(loglik)
loglik[ind] <- -Inf
if (ind %% 2) swap.edge <- c(2, 4)
else swap.edge <- c(1, 4)
IND <- index2edge(INDEX[(ind + 1) %/% 2, ], nTips + 1L)
treeT <- changeEdge(tree, IND[swap.edge], IND, edgeMatrix[ind, ])
test <- pml.fit4(treeT, data, bf = bf, k = k, g = g, w = w, eig = eig,
ll.0 = ll.0, inv = inv, wMix=wMix, llMix=llMix, ...)
if (test <= ll + eps0) candidates[ind] <- FALSE
if (test > ll + eps0) {
ll <- test
swap <- swap + 1
tree <- treeT
indi <- which(rep(colSums(apply(INDEX, 1, match, INDEX[(ind + 1) %/% 2, ],
nomatch = 0)) > 0, each = 2))
candidates[indi] <- FALSE
loglik[indi] <- -Inf
if(!is.null(RELL)){
siteLik <- pml.fit4(tree, data, bf=bf, eig=eig, ll.0=ll.0, w=w,
g=g, site=TRUE, wMix=wMix, llMix=llMix, ...)$siteLik
RELL <- update_rell(RELL, siteLik, tree)
}
}
}
list(tree = tree, loglik = ll, swap = swap, candidates = candidates,
RELL=RELL)
}
opt_nni <- function(tree, data, rooted, iter_max, trace, ll, RELL=NULL, ...){
swap <- 0
iter <- 0
llstart <- ll
while (iter < iter_max) {
if (!rooted) {
tmp <- pml.nni(tree, data, ll=ll, RELL=RELL, ...)
res <- optimEdge(tmp$tree, data, ...)
}
else {
tmp <- rooted.nni(tree, data, RELL=RELL, ...)
res <- optimRooted(tmp$tree, data, ...)
}
if(!is.null(RELL)) RELL <- tmp$RELL
ll2 <- res$logLik
# if(length(ll2)==0) browser()
if(ll2 > (ll + 1e-8)) # epsR
tree <- res$tree
else {
res$logLik <- ll
res$tree <- tree
tmp$swap <- 0
ll2 <- ll
}
swap <- swap + tmp$swap
if (trace > 1) cat("optimize topology: ", ll, "-->", ll2,
" NNI moves: ", tmp$swap, "\n")
ll <- ll2
iter <- iter + 1
if (tmp$swap == 0) {
break()
iter <- iter_max
}
}
#
if (!rooted) res <- optimEdge(tmp$tree, data, ...)
else res <- optimRooted(tmp$tree, data, ...)
ll2 <- res$logLik
if (trace > 0) cat("optimize topology: ", llstart, "-->", ll2,
" NNI moves: ", swap, "\n")
res$iter <- iter
res$swap <- swap
res$RELL <- RELL
res
}
# external
SH_quartet <- function(tree, data, rooted, ll, ...){
if (rooted) tmp <- rooted.nni(tree, data, aLRT=TRUE, ...)
else tmp <- pml.nni(tree, data, ll=ll, aLRT=TRUE, ...)
tmp
}
opt_Edge <- function(tree, data, rooted, ...){
if(rooted){
res <- optimRooted(tree, data, ...)
}
else{
res <- optimEdge(tree, data, ...)
}
res
}
init_rell <- function(x, B = 100L){
weight <- as.integer(attr(x, "weight"))
lw <- attr(x, "nr")
X <- matrix(NA_integer_, B, lw)
wvec <- rep( seq_len(lw), weight)
for (i in 1:B) X[i,] <- tabulate(sample(wvec, replace = TRUE), nbins = lw)
bs <- vector("list", B)
logLik <- rep(-Inf, B)
list(X=X, bs=bs, logLik=logLik)
}
update_rell <- function(obj, siteLik, tree){
rell_tmp <- obj$X %*% siteLik
rell_ind <- rell_tmp > obj$logLik
if(any(rell_ind)){
obj$logLik[rell_ind] <- rell_tmp[rell_ind]
obj$bs[rell_ind] <- c(tree)
}
obj
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.