R/toolbox.R

Defines functions RStudio getbreaks varietal2compositional varietal2distributional resample.varietal resample.distributional resample.default resample removeNAcols dmvnorm combine amalgamate.varietal amalgamate.SRDcorrected amalgamate.counts amalgamate.compositional amalgamate.default amalgamate sumcols ndim get.densities names.ternary names.KDEs names.varietal names.counts names.compositional names.distributional setmM get.data.names subset.varietal subset.counts subset.compositional subset.distributional ALR.compositional ALR.default ALR CLR.compositional CLR.default CLR

Documented in ALR ALR.compositional ALR.default amalgamate amalgamate.compositional amalgamate.counts amalgamate.default amalgamate.SRDcorrected amalgamate.varietal CLR CLR.compositional CLR.default combine subset.compositional subset.counts subset.distributional subset.varietal varietal2distributional

#' Centred logratio transformation
#'
#' Calculates Aitchison's centered logratio transformation for a
#' dataset of class \code{compositional} or a compositional data
#' matrix.
#' @param x an object of class \code{compositional} OR a matrix of
#'     numerical values
#' @param inverse perform the inverse inverse logratio transformation?
#' @param ... optional arguments
#' @return a matrix of CLR coordinates OR an object of class
#'     \code{compositional} (if \code{inverse=TRUE})
#' @examples
#' # The following code shows that applying provenance's PCA function
#' # to compositional data is equivalent to applying R's built-in
#' # princomp function to the CLR transformed data.
#' data(Namib)
#' plot(PCA(Namib$Major))
#' dev.new()
#' clrdat <- CLR(Namib$Major)
#' biplot(princomp(clrdat))
#' @rdname CLR
#' @export
CLR <- function(x,...){ UseMethod("CLR",x) }
#' @rdname CLR
#' @export
CLR.default <- function(x,inverse=FALSE,...){
    if (inverse){
        closure <-  rowSums(exp(x)) %*% matrix(1,nrow=1,ncol=length(x))
        out <- as.compositional(exp(x) / closure)
    } else {
        g <- apply(log(x),1,mean)
        nc <- ncol(x)
        gg <- matrix(rep(g,nc),ncol=nc,byrow=FALSE)
        out <- log(x) - gg
    }
    return(out)
}
#' @rdname CLR
#' @export
CLR.compositional <- function(x,...){
    return(CLR(x$x,...))
}

#' Additive logratio transformation
#'
#' Calculates Aitchison's additive logratio transformation for a
#' dataset of class \code{compositional} or a compositional data
#' matrix.
#' @param x an object of class \code{compositional} OR a matrix of numerical values
#' @param inverse perform the inverse inverse logratio transformation?
#' @param ... optional arguments
#' @return a matrix of ALR coordinates OR an object of class
#'     \code{compositional} (if \code{inverse=TRUE}).
#' @examples
#' # logratio plot of trace element concentrations:
#' data(Namib)
#' alr <- ALR(Namib$Trace)
#' pairs(alr[,1:5])
#' title('log(X/Pb)')
#' @export
#' @rdname ALR
#' @export
ALR <- function(x,...){ UseMethod("ALR",x) }
#' @rdname ALR
#' @export
ALR.default <- function(x,inverse=FALSE,...){
    dat <- as.matrix(x)
    nr <- nrow(dat)
    nc <- ncol(dat)
    if (inverse){
        num <- matrix(1,nr,nc+1)
        num[,1:nc] <- exp(dat)
        den <- as.matrix(rowSums(num)) %*% matrix(1,1,nc+1)
        out <- list()
        out$x <- num/den
        out$method <- 'KS'
        out$colmap <- 'rainbow'
        class(out) <- 'compositional'
    } else {
        num <- log(dat[,1:(nc-1),drop=FALSE])
        den <- log(subset(dat,select=nc)) %*% matrix(1,1,nc-1)
        out <- num - den
    }
    return(out)
}
#' @rdname ALR
#' @export
ALR.compositional <- function(x,...){
    return(ALR(x$x,...))
}

#' Get a subset of provenance data
#'
#' Return a subset of provenance data according to some specified
#' indices
#' @param x an object of class \code{distributional},
#'     \code{compositional}, \code{counts} or \code{varietal}.
#' @param subset logical expression indicating elements or rows to
#'     keep: missing values are taken as false.
#' @param select a vector of sample names
#' @param ... optional arguments for the generic subset function
#' @return an object of the same class as \code{x}
#' @seealso \link{amalgamate}, \link{combine}
#' @examples
#' data(Namib)
#' coast <- c("N1","N2","T8","T13","N12","N13")
#' ZTRcoast <- subset(Namib$HM,select=coast,components=c('gt','cpx','ep'))
#' DZcoast <- subset(Namib$DZ,select=coast)
#' summaryplot(ZTRcoast,KDEs(DZcoast),ncol=2)
#' @name subset
#' @export
subset.distributional <- function(x,subset=NULL,select=NULL,...){
    out <- x
    if (!is.null(subset)){
        i <- which(subset,arr.ind=TRUE)
    } else if (!is.null(select)){
        i <- match(select,names(x))
    } else {
        return(out)
    }
    if (length(x$err)==length(x$x)) out$err <- x$err[i]    
    out$x <- x$x[i]
    return(out)
}
#' @param components vector of categories (column names) to keep
#' @rdname subset
#' @export
subset.compositional <- function(x,subset=NULL,components=NULL,select=NULL,...){
    out <- x
    if (!is.null(subset)){
        i <- which(subset,arr.ind=TRUE)
    } else if (!is.null(select)){
        i <- match(select,names(x))
    } else {
        i <- 1:nrow(x$x)
    }
    if (!is.null(components)){
        j <- match(components,colnames(x$x))
    } else {
        j <- 1:ncol(x$x)
    }
    out$x <- x$x[i,j,drop=FALSE]
    if (methods::is(x,"SRDcorrected")){
        out$restoration <- x$restoration[i]
        for (sname in rownames(out$x)){
            out$restoration[[sname]] <- subset(x$restoration[[sname]],select=j)
        }
    }
    return(out)
}
#' @rdname subset
#' @export
subset.counts <- function(x,subset=NULL,components=NULL,select=NULL,...){
    out <- subset.compositional(x,subset=subset,select=select,
                                components=components,...)
    if (methods::is(x,"ternary")){
        i <- match(rownames(out$x),rownames(x$raw))
        j <- match(colnames(out$x),colnames(x$raw))
        out$raw <- x$raw[i,j,drop=FALSE]
    }
    out
}
#' @rdname subset
#' @export
subset.varietal <- function(x,subset=NULL,components=NULL,select=NULL,...){
    if (is.null(select)){
        if (is.null(subset)){
            snames <- names(x)
        } else {
            snames <- names(x)[subset]
        }
    } else {
        snames <- select
    }
    if (is.null(components)){
        components <- colnames(x$x[[1]])
    }
    out <- x
    out$x <- list()
    for (sname in snames){
        out$x[[sname]] <- x$x[[sname]][,components]
    }
    out
}

# calculate the trace of a matrix
tr <- function (m){
    if (!is.matrix(m) | (dim(m)[1] != dim(m)[2])) 
        stop("m must be a square matrix")
    return(sum(diag(m)))
}

get.data.names <- function(dlist){
    out <- c()
    nd <- length(dlist)
    for (i in 1:nd){
        if (is.null(dlist[[i]]$name)) dname <- i
        else dname <- dlist[[i]]$name
        out <- c(out,dname)
    }
    out
}

# set minimum and maximum values of a dataset
setmM <- function(x,from=NA,to=NA,log=FALSE){
    if (is.na(from)) { from <- min(x); setm <- TRUE }
    else { setm <- FALSE }
    if (is.na(to)) { to <- max(x); setM <- TRUE }
    else { setM <- FALSE }
    if (setm) {
        if (log) { from <- from/2 }
        else {
            if (2*from-to<0) {from <- 0}
            else {from <- from-(to-from)/10}
        }
    }
    if (setM) {
        if (log) { to <- 2*to }
        else { to <- to+(to-from)/10 }
    }
    return(list(m=from,M=to))
}

#' @export
names.distributional <- function(x){
    out <- names(x$x)
    if (is.null(out)) out <- 1:length(x$x)
    return(out)
}
#' @export
names.compositional <- function(x){
    out <- rownames(x$x)
    if (is.null(out)) out <- 1:nrow(x$x)
    return(out)
}
#' @export
names.counts <- function(x){
    out <- rownames(x$x)
    if (is.null(out)) out <- 1:nrow(x$x)
    return(out)
}
#' @export
names.varietal <- function(x){
    return(names(x$x))
}

#' @export
names.KDEs <- function(x){
    out <- names(x$kdes)
    if (is.null(out)) out <- 1:length(x$kdes)
    return(out)
}
#' @export
names.ternary <- function(x){
    out <- rownames(x$x)
    if (is.null(out)) out <- 1:nrow(x$x)
    return(out)
}

get.densities <- function(X,dtable){
    if (!(methods::is(X,"compositional") | methods::is(X,"counts")))
        stop("input is not of class compositional or counts")
    minerals <- colnames(X$x)
    i <- which(colnames(dtable) %in% colnames(X$x), arr.ind=TRUE)
    return(dtable[i])
}

ndim <- function(X){
    return(length(dim(X)))
}

sumcols <- function(X,x){
    if (ndim(X)==0){
        out <- X[x]
    } else {
        dat <- subset(X,select=x)
        out <- rowSums(dat)
    }    
    return(out)
}

#' Group components of a composition
#'
#' Adds several components of a composition together into a single
#' component
#' @param x a compositional dataset
#' @param ... a series of new labels assigned to strings or vectors of
#'     strings denoting the components that need amalgamating
#' @return an object of the same class as \code{X} with fewer
#'     components
#' @examples
#' data(Namib)
#' HMcomponents <- c("zr","tm","rt","TiOx","sph","ap","ep",
#'                   "gt","st","amp","cpx","opx")
#' am <- amalgamate(Namib$PTHM,feldspars=c("KF","P"),
#'                  lithics=c("Lm","Lv","Ls"),heavies=HMcomponents)
#' plot(ternary(am))
#' @rdname amalgamate
#' @export
amalgamate <- function(x,...){ UseMethod("amalgamate",x) }
#' @rdname amalgamate
#' @export
amalgamate.default <- function(x,...){
    groups <- list(...)
    ng <- length(groups)
    labels <- names(groups)
    out <- NULL
    for (i in 1:ng){
        colsum <- sumcols(x,groups[[i]])
        out <- cbind(out,colsum)
    }
    colnames(out) <- labels
    return(out)
}
#' @rdname amalgamate
#' @export
amalgamate.compositional <- function(x,...){
    out <- x
    out$x <- amalgamate(x$x,...)
    return(out)
}
#' @rdname amalgamate
#' @export
amalgamate.counts <- function(x,...){
    out <- x
    out$x <- amalgamate(x$x,...)
    return(out)
}
#' @rdname amalgamate
#' @export
amalgamate.SRDcorrected <- function(x,...){
    out <- x
    out$x <- amalgamate.default(x$x,...)
    for (sname in names(x$restoration)){
        out$restoration[[sname]] <-
            amalgamate.default(x$restoration[[sname]],...)
    }
    return(out)
}
#' @rdname amalgamate
#' @export
amalgamate.varietal <- function(x,...){
    out <- x
    out$x <- amalgamate(x$x,...)
    return(out)
}

#' Combine samples of distributional data
#'
#' Lumps all single grain analyses of several samples together under a
#' new name
#' @param x a distributional dataset
#' @param ... a series of new labels assigned to strings or vectors of
#'     strings denoting the samples that need amalgamating
#' @return a distributional data object with fewer samples than
#'     \code{x}
#' @examples
#' data(Namib)
#' combined <- combine(Namib$DZ,
#'                     east=c('N3','N4','N5','N6','N7','N8','N9','N10'),
#'                     west=c('N1','N2','N11','N12','T8','T13'))
#' summaryplot(KDEs(combined))
#' @export
combine <- function(x,...){
    out <- x
    groups <- list(...)
    ng <- length(groups)
    labels <- names(groups)
    out$x <- list()
    out$err <- list()
    loadErr <- (length(x$err)>0)
    for (i in 1:ng){
        out$x[[labels[i]]] <- NULL
        for (g in groups[[i]]){
            out$x[[labels[i]]] <- c(out$x[[labels[i]]],x$x[[g]])
            if (loadErr) {
                out$err[[labels[i]]] <- c(out$err[[labels[i]]],x$err[[g]])
            }
        }
    }
    return(out)    
}

# from package mvtnorm:
dmvnorm <- function(x,mean=rep(0,p),sigma=diag(p),log=FALSE) {
    if (is.vector(x)) 
        x <- matrix(x, ncol = length(x))
    p <- ncol(x)
    if (!missing(mean)) {
        if (!is.null(dim(mean))) 
            dim(mean) <- NULL
        if (length(mean) != p) 
            stop("mean and sigma have non-conforming size")
    }
    if (!missing(sigma)) {
        if (p != ncol(sigma)) 
            stop("x and sigma have non-conforming size")
        if (!isSymmetric(sigma, tol = sqrt(.Machine$double.eps), 
            check.attributes = FALSE)) 
            stop("sigma must be a symmetric matrix")
    }
    dec <- tryCatch(chol(sigma), error = function(e) e)
    if (inherits(dec, "error")) {
        x.is.mu <- colSums(t(x) != mean) == 0
        logretval <- rep.int(-Inf, nrow(x))
        logretval[x.is.mu] <- Inf
    }
    else {
        tmp <- backsolve(dec, t(x) - mean, transpose = TRUE)
        rss <- colSums(tmp^2)
        logretval <- -sum(log(diag(dec))) - 0.5 * p * log(2 * 
            pi) - 0.5 * rss
    }
    names(logretval) <- rownames(x)
    if (log) 
        logretval
    else exp(logretval)
}

removeNAcols <- function(x){
    bad <- apply(apply(x,2,is.na),2,all)
    subset(x,select=!bad)
}


#' bootstrapped confidence intervals for MDS
#' @param x a provenance data object
#' @noRd
resample <- function(x,...){ UseMethod("resample",x) }
#' @noRd
resample.default <- function(x,...){ stop('No default method') }
#' @param nb number of bootstrap samples
#' @param seed random number seed
#' @noRd
resample.distributional <- function(x,nb=10,seed=1,...){
    set.seed(seed)
    snames <- names(x$x)
    ns <- length(snames)
    out <- x
    for (i in 1:ns){
        ng <- length(x$x[[i]])
        for (j in 1:nb){
            sname <- paste0(snames[i],'[',j,']')
            selected <- sample(1:ng,replace=TRUE)
            out$x[[sname]] <- x$x[[i]][selected]
            if (x$method=='SH'){
                out$err[[sname]] <- x$err[[i]][selected]
            }
        }
    }
    return(out)
}
#' @noRd
resample.varietal <- function(x,nb=10,seed=1,...){
    set.seed(1)
    out <- x
    snames <- names(x$x)
    for (sname in snames){
        ng <- nrow(x$x[[sname]])
        for (j in 1:nb){
            k <- sample(1:ng,size=ng,replace=TRUE)
            out$x[[paste0(sname,'[',j,']')]] <- x$x[[sname]][k,,drop=FALSE]
        }
    }
    return(out)
}

#' Convert varietal to distributional data
#'
#' Convert an object of class \code{varietal} either to a list of
#' distributional objects by breaking it up into separate elements, or
#' to a single distributional object corresponding to the first
#' principal component.
#'
#' @param x an object of class \code{varietal}.
#' @param bycol logical. If \code{TRUE}, returns a list of
#'     distributional objects (one for each element). If \code{FALSE},
#'     returns a single distributional object (containing the PC1
#'     scores for each sample).
#' @param plot logical. If \code{TRUE}, shows the PCA biplot that is
#'     used when \code{bycol} is \code{FALSE}.
#' @examples
#' Ttn_file <- system.file("SNSM/Ttn_chem.csv",package="provenance")
#' Ttn <- read.varietal(fn=Ttn_file,snames=3)
#' varietal2distributional(Ttn,bycol=FALSE,plot=TRUE)
#' @export
varietal2distributional <- function(x,bycol=FALSE,plot=FALSE){
    template <- list(x=list(),colmap='rainbow',method=x$method)
    class(template) <- 'distributional'
    if (bycol){
        out <- list()
        snames <- names(x)
        for (cn in colnames(x$x[[1]])){
            out[[cn]] <- template
            out[[cn]]$name <- cn
            out[[cn]]$xlab <- 'concentration'
            for (sname in snames){
                out[[cn]]$x[[sname]] <- x$x[[sname]][,cn]   
            }
            out[[cn]]$breaks <- getbreaks(out[[cn]]$x)
        }
    } else {
        vc <- varietal2compositional(x)
        pc <- PCA(vc,scale.=FALSE)
        if (plot) plot(pc)
        out <- template
        out$name <- x$name
        out$rotation <- pc$rotation[,'PC1']
        out$breaks <- getbreaks(pc$x[,'PC1'])
        out$xlab <- 'PC1'
        for (sname in names(x)){
            out$x[[sname]] <- stats::predict(pc,newdata=CLR(x$x[[sname]]))[,1]
        }
    }
    return(out)
}
varietal2compositional <- function(x){
    tab <- NULL
    snames <- names(x)
    for (sname in snames){
        tab <- rbind(tab,x$x[[sname]])
    }
    out <- as.compositional(tab)
    return(out)
}

# dat = vector of numbers
getbreaks <- function(dat){
    d <- unlist(dat)
    ns <- length(dat)
    ng <- length(d)
    nb <- log(ng/ns,base=2)+1
    seq(min(d),max(d),length.out=nb+1)
}

RStudio <- function(){
    Sys.getenv("RSTUDIO") == '1'
}

Try the provenance package in your browser

Any scripts or data that you put into this service are public.

provenance documentation built on May 29, 2024, 4:23 a.m.