Nothing
## -----------------------------------------------------------------------------
knitr::opts_chunk$set(
message = FALSE,
digits = 3,
collapse = TRUE,
comment = "#>",
eval = requireNamespace("modeldata", quietly = TRUE) && requireNamespace("rsample", quietly = TRUE)
)
options(digits = 3)
## -----------------------------------------------------------------------------
library(recipes)
library(rsample)
library(modeldata)
data("credit_data")
set.seed(55)
train_test_split <- initial_split(credit_data)
credit_train <- training(train_test_split)
credit_test <- testing(train_test_split)
## -----------------------------------------------------------------------------
vapply(credit_train, function(x) mean(!is.na(x)), numeric(1))
## -----------------------------------------------------------------------------
rec_obj <- recipe(Status ~ ., data = credit_train)
rec_obj
## -----------------------------------------------------------------------------
# rec_obj <- step_{X}(rec_obj, arguments) ## or
# rec_obj <- rec_obj |> step_{X}(arguments)
## -----------------------------------------------------------------------------
grep("impute_", ls("package:recipes"), value = TRUE)
## -----------------------------------------------------------------------------
imputed <- rec_obj |>
step_impute_knn(all_predictors())
imputed
## -----------------------------------------------------------------------------
ind_vars <- imputed |>
step_dummy(all_nominal_predictors())
ind_vars
## -----------------------------------------------------------------------------
standardized <- ind_vars |>
step_center(all_numeric_predictors()) |>
step_scale(all_numeric_predictors())
standardized
## -----------------------------------------------------------------------------
trained_rec <- prep(standardized, training = credit_train)
trained_rec
## -----------------------------------------------------------------------------
train_data <- bake(trained_rec, new_data = credit_train)
test_data <- bake(trained_rec, new_data = credit_test)
## -----------------------------------------------------------------------------
class(test_data)
test_data
vapply(test_data, function(x) mean(!is.na(x)), numeric(1))
## -----------------------------------------------------------------------------
grep("^step_", ls("package:recipes"), value = TRUE)
## -----------------------------------------------------------------------------
# trained_rec <- trained_rec |>
# check_missing(contains("Marital"))
## -----------------------------------------------------------------------------
grep("^check_", ls("package:recipes"), value = TRUE)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.