Nothing
library(testthat)
library(recipes)
n <- 50
set.seed(424)
dat <- data.frame(
x1 = rnorm(n),
x2 = rep(1:5, each = 10),
x3 = factor(rep(letters[1:3], c(2, 2, 46))),
x4 = 1,
y = runif(n)
)
ratios <- function(x) {
tab <- sort(table(x), decreasing = TRUE)
if (length(tab) > 1) {
tab[1] / tab[2]
} else {
Inf
}
}
pct_uni <- vapply(dat[, -5], function(x) length(unique(x)), c(val = 0)) /
nrow(dat) *
100
f_ratio <- vapply(dat[, -5], ratios, c(val = 0))
vars <- names(pct_uni)
test_that("zv filtering", {
rec <- recipe(y ~ ., data = dat)
filtering <- rec |>
step_zv(x1, x2, x3, x4)
filtering_trained <- prep(filtering, training = dat, verbose = FALSE)
expect_equal(filtering_trained$steps[[1]]$removals, "x4")
})
test_that("group-wise zv filtering", {
mtcars0 <- mtcars |>
mutate(
const = 0,
group1 = am,
group2 = vs
)
rec_group1 <- recipe(~., data = mtcars0) |>
step_zv(all_predictors(), group = "group1") |>
prep()
expect_equal(rec_group1$steps[[1]]$removals, c("am", "const"))
rec_group2 <- recipe(~., data = mtcars0) |>
step_zv(all_predictors(), group = "group2") |>
prep()
expect_equal(rec_group2$steps[[1]]$removals, c("vs", "const"))
rec_group12 <- recipe(~., data = mtcars0) |>
step_zv(all_predictors(), group = c("group1", "group2")) |>
prep()
expect_equal(
rec_group12$steps[[1]]$removals,
c("cyl", "vs", "am", "gear", "const")
)
rec_group12_vars <- recipe(~., data = mtcars0) |>
step_zv(all_predictors(), group = vars(group1, group2)) |>
prep()
expect_equal(
rec_group12_vars$steps[[1]]$removals,
c("cyl", "vs", "am", "gear", "const")
)
})
test_that("mssing values in zero-variance screen", {
x <- rep(1, 5)
y <- c(NA, x)
z <- rep(NA, 5)
expect_true(recipes:::one_unique(x))
expect_true(recipes:::one_unique(y))
expect_true(recipes:::one_unique(z))
})
test_that("doesn't destroy sparsity", {
mtcars$vs <- sparsevctrs::as_sparse_integer(mtcars$vs)
mtcars$am <- sparsevctrs::as_sparse_integer(mtcars$am)
rec <- recipe(~ am + vs, data = mtcars) |>
step_zv(all_predictors())
rec_trained <- prep(rec, training = mtcars, verbose = FALSE)
rec_trans <- bake(rec_trained, new_data = mtcars)
expect_true(
all(vapply(rec_trans, sparsevctrs::is_sparse_integer, logical(1)))
)
expect_true(.recipes_preserve_sparsity(rec$steps[[1]]))
})
# Infrastructure ---------------------------------------------------------------
test_that("bake method errors when needed non-standard role columns are missing", {
# Here for completeness
# step_zv() removes variables and thus does not care if they are not there.
expect_true(TRUE)
})
test_that("empty printing", {
rec <- recipe(mpg ~ ., mtcars)
rec <- step_zv(rec)
expect_snapshot(rec)
rec <- prep(rec, mtcars)
expect_snapshot(rec)
})
test_that("empty selection prep/bake is a no-op", {
rec1 <- recipe(mpg ~ ., mtcars)
rec2 <- step_zv(rec1)
rec1 <- prep(rec1, mtcars)
rec2 <- prep(rec2, mtcars)
baked1 <- bake(rec1, mtcars)
baked2 <- bake(rec2, mtcars)
expect_identical(baked1, baked2)
})
test_that("empty selection tidy method works", {
rec <- recipe(mpg ~ ., mtcars)
rec <- step_zv(rec)
expect <- tibble(
terms = character(),
id = character()
)
expect_identical(tidy(rec, number = 1), expect)
rec <- prep(rec, mtcars)
expect_identical(tidy(rec, number = 1), expect)
})
test_that("empty printing", {
rec <- recipe(mpg ~ ., mtcars)
rec <- step_zv(rec)
expect_snapshot(print(rec))
expect_snapshot(prep(rec))
})
test_that("0 and 1 rows data work in bake method", {
data <- mtcars
rec <- recipe(~., data) |>
step_zv(all_predictors()) |>
prep()
expect_identical(
nrow(bake(rec, slice(data, 1))),
1L
)
expect_identical(
nrow(bake(rec, slice(data, 0))),
0L
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.