Nothing
#' Construct an FGAM regression term
#'
#' Defines a term \eqn{\int_{T}F(X_i(t),t)dt} for inclusion in an \code{mgcv::gam}-formula (or
#' \code{{bam}} or \code{{gamm}} or \code{gamm4:::gamm}) as constructed by
#' \code{{pfr}}, where \eqn{F(x,t)} is an unknown smooth bivariate function and \eqn{X_i(t)}
#' is a functional predictor on the closed interval \eqn{T}. See \code{{smooth.terms}}
#' for a list of bivariate basis and penalty options; the default is a tensor
#' product basis with marginal cubic regression splines for estimating \eqn{F(x,t)}.
#'
#' @param X functional predictors, typically expressed as an \code{N} by \code{J} matrix,
#' where \code{N} is the number of columns and \code{J} is the number of
#' evaluation points. May include missing/sparse functions, which are
#' indicated by \code{NA} values. Alternatively, can be an object of class
#' \code{"fd"}; see \code{[fda]{fd}}.
#' @param argvals indices of evaluation of \code{X}, i.e. \eqn{(t_{i1},.,t_{iJ})} for
#' subject \eqn{i}. May be entered as either a length-\code{J} vector, or as
#' an \code{N} by \code{J} matrix. Indices may be unequally spaced. Entering
#' as a matrix allows for different observations times for each subject. If
#' \code{NULL}, defaults to an equally-spaced grid between 0 or 1 (or within
#' \code{X$basis$rangeval} if \code{X} is a \code{fd} object.)
#' @param xind same as argvals. It will not be supported in the next version of refund.
#' @param basistype defaults to \code{"te"}, i.e. a tensor product spline to represent \eqn{F(x,t)} Alternatively,
#' use \code{"s"} for bivariate basis functions (see \code{{s}}) or \code{"t2"} for an alternative
#' parameterization of tensor product splines (see \code{{t2}})
#' @param integration method used for numerical integration. Defaults to \code{"simpson"}'s rule
#' for calculating entries in \code{L}. Alternatively and for non-equidistant grids,
#' \code{"trapezoidal"} or \code{"riemann"}.
#' @param L an optional \code{N} by \code{ncol(argvals)} matrix giving the weights for the numerical
#' integration over \code{t}. If present, overrides \code{integration}.
#' @param presmooth string indicating the method to be used for preprocessing functional predictor prior
#' to fitting. Options are \code{fpca.sc}, \code{fpca.face}, \code{fpca.ssvd}, \code{fpca.bspline}, and
#' \code{fpca.interpolate}. Defaults to \code{NULL} indicateing no preprocessing. See
#' \code{{create.prep.func}}.
#' @param presmooth.opts list including options passed to preprocessing method
#' \code{{create.prep.func}}.
#' @param Xrange numeric; range to use when specifying the marginal basis for the \emph{x}-axis. It may
#' be desired to increase this slightly over the default of \code{range(X)} if concerned about predicting
#' for future observed curves that take values outside of \code{range(X)}
#' @param Qtransform logical; should the functional be transformed using the empirical cdf and
#' applying a quantile transformation on each column of \code{X} prior to fitting?
#' @param ... optional arguments for basis and penalization to be passed to the
#' function indicated by \code{basistype}. These could include, for example,
#' \code{"bs"}, \code{"k"}, \code{"m"}, etc. See \code{{te}} or
#' \code{{s}} for details.
#'
#' @return A list with the following entries:
#' \item{\code{call}}{a \code{"call"} to \code{te} (or \code{s}, \code{t2}) using the appropriately
#' constructed covariate and weight matrices.}
#' \item{\code{argvals}}{the \code{argvals} argument supplied to \code{af}}
#' \item{\code{L}}{the matrix of weights used for the integration}
#' \item{\code{xindname}}{the name used for the functional predictor variable in the \code{formula} used by \code{mgcv}}
#' \item{\code{tindname}}{the name used for \code{argvals} variable in the \code{formula} used by \code{mgcv}}
#' \item{\code{Lname}}{the name used for the \code{L} variable in the \code{formula} used by \code{mgcv}}
#' \item{\code{presmooth}}{the \code{presmooth} argument supplied to \code{af}}
#' \item{\code{Xrange}}{the \code{Xrange} argument supplied to \code{af}}
#' \item{\code{prep.func}}{a function that preprocesses data based on the preprocessing method specified in \code{presmooth}. See
#' \code{{create.prep.func}}}
#'
#' @examples
#' \dontrun{
#' data(DTI)
#' ## only consider first visit and cases (no PASAT scores for controls)
#' DTI1 <- DTI[DTI$visit==1 & DTI$case==1,]
#' DTI2 <- DTI1[complete.cases(DTI1),]
#'
#' ## fit FGAM using FA measurements along corpus callosum
#' ## as functional predictor with PASAT as response
#' ## using 8 cubic B-splines for marginal bases with third
#' ## order marginal difference penalties
#' ## specifying gamma > 1 enforces more smoothing when using
#' ## GCV to choose smoothing parameters
#' fit1 <- pfr(pasat ~ af(cca, k=c(8,8), m=list(c(2,3), c(2,3)),
#' presmooth="bspline", bs="ps"),
#' method="GCV.Cp", gamma=1.2, data=DTI2)
#' plot(fit1, scheme=2)
#' vis.pfr(fit1)
#'
#' ## af term for the cca measurements plus an lf term for the rcst measurements
#' ## leave out 10 samples for prediction
#' test <- sample(nrow(DTI2), 10)
#' fit2 <- pfr(pasat ~ af(cca, k=c(7,7), m=list(c(2,2), c(2,2)), bs="ps",
#' presmooth="fpca.face") +
#' lf(rcst, k=7, m=c(2,2), bs="ps"),
#' method="GCV.Cp", gamma=1.2, data=DTI2[-test,])
#' par(mfrow=c(1,2))
#' plot(fit2, scheme=2, rug=FALSE)
#' vis.pfr(fit2, select=1, xval=.6)
#' pred <- predict(fit2, newdata = DTI2[test,], type='response', PredOutOfRange = TRUE)
#' sqrt(mean((DTI2$pasat[test] - pred)^2))
#'
#' ## Try to predict the binary response disease status (case or control)
#' ## using the quantile transformed measurements from the rcst tract
#' ## with a smooth component for a scalar covariate that is pure noise
#' DTI3 <- DTI[DTI$visit==1,]
#' DTI3 <- DTI3[complete.cases(DTI3$rcst),]
#' z1 <- rnorm(nrow(DTI3))
#' fit3 <- pfr(case ~ af(rcst, k=c(7,7), m = list(c(2, 1), c(2, 1)), bs="ps",
#' presmooth="fpca.face", Qtransform=TRUE) +
#' s(z1, k = 10), family="binomial", select=TRUE, data=DTI3)
#' par(mfrow=c(1,2))
#' plot(fit3, scheme=2, rug=FALSE)
#' abline(h=0, col="green")
#'
#' # 4 versions: fit with/without Qtransform, plotted with/without Qtransform
#' fit4 <- pfr(case ~ af(rcst, k=c(7,7), m = list(c(2, 1), c(2, 1)), bs="ps",
#' presmooth="fpca.face", Qtransform=FALSE) +
#' s(z1, k = 10), family="binomial", select=TRUE, data=DTI3)
#' par(mfrow=c(2,2))
#' zlms <- c(-7.2,4.3)
#' plot(fit4, select=1, scheme=2, main="QT=FALSE", zlim=zlms, xlab="t", ylab="rcst")
#' plot(fit4, select=1, scheme=2, Qtransform=TRUE, main="QT=FALSE", rug=FALSE,
#' zlim=zlms, xlab="t", ylab="p(rcst)")
#' plot(fit3, select=1, scheme=2, main="QT=TRUE", zlim=zlms, xlab="t", ylab="rcst")
#' plot(fit3, select=1, scheme=2, Qtransform=TRUE, main="QT=TRUE", rug=FALSE,
#' zlim=zlms, xlab="t", ylab="p(rcst)")
#'
#' vis.pfr(fit3, select=1, plot.type="contour")
#' }
#'
#' @author Mathew W. McLean \email{mathew.w.mclean@@gmail.com}, Fabian Scheipl,
#' and Jonathan Gellar
#' @references McLean, M. W., Hooker, G., Staicu, A.-M., Scheipl, F., and Ruppert, D. (2014). Functional
#' generalized additive models. \emph{Journal of Computational and Graphical Statistics}, \bold{23 (1)},
#' pp. 249-269.
#' @seealso \code{pfr}, \code{lf}, mgcv's \code{linear.functional.terms},
#' \code{pfr} for examples
#' @importFrom stats ecdf
#' @importFrom fda int2Lfd smooth.basisPar eval.fd create.bspline.basis
#' @importFrom utils modifyList getFromNamespace
#' @importFrom utils head tail
#' @importFrom grDevices col2rgb dev.interactive devAskNewPage heat.colors rgb
#' @importFrom graphics abline axis box contour image lines mtext par plot points strheight strwidth text title
#' @importFrom stats approx coef complete.cases contrasts
#' @importFrom stats cov cov2cor dbeta fitted formula median
#' @importFrom stats model.frame model.response na.exclude optimize
#' @importFrom stats pnorm predict rchisq resid residuals
#' @importFrom stats rgamma runif sd termplot terms var vcov
#' @importFrom stats weighted.mean
#' @importFrom methods as is
#' @importFrom stats ave
#' @export
af <- function(X, argvals = NULL, xind = NULL,
basistype = c("te", "t2", "s"),
integration = c("simpson", "trapezoidal", "riemann"),
L = NULL, presmooth = NULL, presmooth.opts = NULL,
Xrange=range(X, na.rm=T), Qtransform=FALSE, ...) {
basistype <- match.arg(basistype)
integration <- match.arg(integration)
# Catch if af_old syntax is used
dots <- list(...)
dots.unmatched <- names(dots)[!(names(dots) %in%
names(formals(eval(basistype))))]
if (any(dots.unmatched %in% names(formals(af_old))) |
is.logical(presmooth)) {
warning(paste0("The interface for af() has changed, see ?af for details. ",
"This interface will not be supported in the next ",
"refund release."))
# Call af_old()
call <- sys.call()
call[[1]] <- as.symbol("af_old")
ret <- eval(call, envir=parent.frame())
return(ret)
}
if (!is.null(xind)) {
argvals = xind
cat("Warnings: xind argument is renamed as argvals and will not be supported
in the next version of refund.")
}
if (is(X, "fd")) {
# If X is an fd object, turn it back into a (possibly pre-smoothed) matrix
if (is.null(argvals))
argvals <- argvals <- seq(X$basis$rangeval[1], X$basis$rangeval[2],
length = length(X$fdnames[[1]]))
X <- t(eval.fd(argvals, X))
} else if (is.null(argvals))
argvals <- seq(0, 1, l = ncol(X))
xind = argvals
xind = argvals
n=nrow(X)
nt=ncol(X)
xindname <- paste(deparse(substitute(X)), ".omat", sep = "")
tindname <- paste(deparse(substitute(X)), ".tmat", sep = "")
Lname <- paste("L.", deparse(substitute(X)), sep = "")
if (is.null(dim(xind))) {
xind <- t(xind)
stopifnot(ncol(xind) == nt)
if (nrow(xind) == 1) {
xind <- matrix(as.vector(xind), nrow = n, ncol = nt,
byrow = T)
}
stopifnot(nrow(xind) == n)
}
if(!is.null(presmooth)){
# create and executepreprocessing function
prep.func = create.prep.func(X = X, argvals = xind[1,], method = presmooth,
options = presmooth.opts)
X <- prep.func(newX = X)
# need to check that smoothing didn't change range of data
if(!Qtransform){
if(max(X)>Xrange[2]){
Xrange[2] <- max(X)
}
if(min(X)<Xrange[1]){
Xrange[1] <- min(X)
}
}
}
if (!is.null(L)) {
stopifnot(nrow(L) == n, ncol(L) == nt)
} else {
L <- switch(integration, simpson = {
((xind[, nt] - xind[, 1])/nt)/3 * matrix(c(1,rep(c(4, 2), length = nt - 2), 1), nrow = n,
ncol = nt, byrow = T)
}, trapezoidal = {
diffs <- t(apply(xind, 1, diff))
0.5 * cbind(diffs[, 1], t(apply(diffs, 1, filter,filter = c(1, 1)))[, -(nt - 1)],
diffs[,(nt - 1)])
}, riemann = {
diffs <- t(apply(xind, 1, diff))
cbind(rep(mean(diffs), n), diffs)
})
}
# Set up dots to make a "dt" basis call
if (Qtransform) {
bs0 <- dots$bs
xt0 <- dots$xt
dots$bs <- "dt"
tf <- list("QTransform")
names(tf) <- xindname
dots$xt <- list(tf=tf)
dots$xt$basistype <- basistype
basistype <- "s"
if (!is.null(bs0)) dots$xt$bs <- bs0
if (!is.null(xt0)) dots$xt$xt <- xt0
}
# Set up data and call
data <- list(xind, X, L)
names(data) <- c(tindname, xindname, Lname)
splinefun <- as.symbol(basistype)
call <- as.call(c(list(splinefun, z=as.symbol(substitute(tindname)),
x=as.symbol(substitute(xindname)),
by = as.symbol(substitute(Lname))), dots))
# Return list
res <- list(call = call, data = data, xind = xind[1,], L = L,
xindname = xindname, tindname=tindname, Lname=Lname,
presmooth=presmooth, Xrange=Xrange)
if(!is.null(presmooth)) {res$prep.func <- prep.func}
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.