Nothing
#' Logistic Model Fitter
#'
#' Fits a binary or propoortional odds ordinal logistic model for a given design matrix and response vector with no missing values in either. Ordinary or quadratic penalized maximum likelihood estimation is used.
#'
#' `lrm.fit` implements a large number of optimization algorithms with the default being Newton-Raphson with step-halving. For binary logistic regression without penalization iteratively reweighted least squares method in [stats::glm.fit()] is an option. The -2 log likeilhood, gradient, and Hessian (negative information) matrix are computed in Fortran for speed. Optionally, the `x` matrix is mean-centered and QR-factored to help in optimization when there are strong collinearities. Parameter estimates and the covariance matrix are adjusted to the original `x` scale after fitting. More detail and comparisons of the various optimization methods may be found [here](https://www.fharrell.com/post/mle/). For ordinal regression with a large number of intercepts (distinct `y` values less one) you may want to use `optim_method='BFGS', which does away with the need to compute the Hessian. This will be helpful if statistical tests and confidence intervals are not being computed, or when only likelihood ratio tests are done.
#'
#' When using Newton-Raphson or Levenberg-Marquardt optimization, sparse Hessian/information/variance-covariance matrices are used throughout. For `nlminb` the Hessian has to be expanded into full non-sparse form, so `nlminb` will not be very efficient for a large number of intercepts.
#'
#' When there is complete separation (Hauck-Donner condition), i.e., the MLE of a coefficient is \eqn{\pm\infty}, and `y` is binary and there is no penalty, `glm.fit` may not converge because it does not have a convergence parameter for the deviance. Setting `trace=1` will reveal that the -2LL is approaching zero but doesn't get there, relatively speaking. In such cases the default of `NR` with `eps=5e-4` or using `nlminb` with its default of `abstol=0.001` works well.
#' @title lrm.fit
#' @param x design matrix with no column for an intercept. If a vector is transformed to a one-column matrix.
#' @param y response vector, numeric, categorical, or character. For ordinal regression, the order of categories comes from `factor` levels, and if `y` is not a factor, from the numerical or alphabetic order of `y` values.
#' @param offset optional numeric vector containing an offset on the logit scale
#' @param initial vector of initial parameter estimates, beginning with the intercepts
#' @param opt_method optimization method, with possible values
#' * `'NR'` : the default, standard Newton-Raphson iteration using the gradient and Hessian, with step-helving. All three convergence criteria of `eps, gradtol, abstol` must be satisfied. Relax some of these if you do not want to consider some of them at all in judging convergence. The defaults for the various tolerances for `NR` result in convergence being mainly judged by `eps` in most uses. Tighten the non-`eps` parameters to give more weight to the other criteria.
#' * `'LM'` : the Levenberg-Marquardt method, with the same convergence criteria as `'NR'`
#' * `'nlminb'` : a quasi-Newton method using [stats::nlminb()] which uses gradients and the Hessian. This is a fast and robust algorithm.
#' * `'glm.fit'` : for binary `y` without penalization only
#' * `'nlm'` : see [stats::nlm()]; not highly recommended
#' * `'BFGS'` :
#' * `'L-BFGS-B'` :
#' * `'CG'` :
#' * `'Nelder-Mead'` : see [stats::optim()] for these 4 methods
#' @param maxit maximum number of iterations allowed, which means different things for different `opt_method`. For `NR` it is the number of updates to parameters not counting step-halving steps. When `maxit=1`, `initial` is assumed to contain the maximum likelihood estimates already, and those are returned as `coefficients`, along with `u`, `info.matrix` (negative Hessian) and `deviance`. `stats` are only computed if `compstats` is explicitly set to `TRUE` by the user.
#' @param reltol used by `BFGS`, `nlminb`, `glm.fit` to specify the convergence criteria in relative terms with regard to -2 LL, i.e., convergence is assume when one minus the fold-change falls below `reltol`
#' @param abstol used by `NR` (maximum absolute change in parameter estimates from one iteration to the next before convergence can be declared; by default has no effect), `nlminb` (by default has no effect; see `abs.tol` argument; set to e.g. 0.001 for `nlminb` when there is complete separation)
#' @param gradtol used by `NR` and `LM` (maximum absolute gradient before convergence can be declared) and `nlm` (similar but for a scaled gradient). For `NR` and `LM` `gradtol` is multiplied by the the sample size / 1000, because the gradient is proportional to sample size.
#' @param factr see [stats::optim()] documentation for `L-BFGS-B`
#' @param eps difference in -2 log likelihood for declaring convergence with `opt_method='NR'`. At present, the old `lrm.fit` approach of still declaring convergence even if the -2 LL gets worse by `eps/10` while the maximum absolute gradient is below 1e-9 is not implemented. This handles the case where the initial estimates are actually MLEs, and prevents endless step-halving.
#' @param minstepsize used with `opt_method='NR'` to specify when to abandon step-halving
#' @param trace set to a positive integer to trace the iterative process. Some optimization methods distinguish `trace=1` from `trace` higher than 1.
#' @param tol QR singularity criterion for `opt_method='NR'` updates; ignored when inverting the final information matrix because `chol` is used for that.
#' @param penalty.matrix a self-contained ready-to-use penalty matrix - see [lrm()]. It is \eqn{p x p} where \eqn{p} is the number of columns of `x`.
#' @param weights a vector (same length as `y`) of possibly fractional case weights
#' @param normwt set to `TRUE` to scale `weights` so they sum to \eqn{n}, the length of `y`; useful for sample surveys as opposed to the default of frequency weighting
#' @param transx set to `TRUE` to center `x` and QR-factor it to orthogonalize. See [this](https://hbiostat.org/rmsc/mle#qr) for details.
#' @param compstats set to `FALSE` to prevent the calculation of the vector of model statistics
#' @param inclpen set to `FALSE` to not include the penalty matrix in the Hessian when the Hessian is being computed on transformed `x`, vs. adding the penalty after back-transforming. This should not matter.
#' @param initglm set to `TRUE` to compute starting values for an ordinal model by using `glm.fit` to fit a binary logistic model for predicting the probability that `y` exceeds or equals the median of `y`. After fitting the binary model, the usual starting estimates for intercepts (log odds of cumulative raw proportions) are all adjusted so that the intercept corresponding to the median is the one from `glm.fit`.
#' @param y.precision when `y`` is numeric, values may need to be rounded to avoid unpredictable behavior with [unique()] with floating-point numbers. Default is to round floating point `y` to 7 decimal places.
#'
#' @return a list with the following elements:
#' * `call`: the R call to `lrm.fit`
#' * `freq`: vector of `y` frequencies
#' * `ymedian`: median of original `y` values if `y` is numeric, otherwise the median of the integer-recorded version of `y`
#' * `yunique`: vector of distinct original `y` values, subject to rounding
#' * `sumty`: vector of weighted `y` frequencies
#' * `stats`: vector with a large number of indexes and model parameters (`NULL` if `compstats=FALSE`):
#' * `Obs`: number of observations
#' * `Max Deriv`: maximum absolute gradiant
#' * `Model L.R.`: overall model LR chi-square statistic
#' * `d.f.`: degrees of freedom (number of non-intercepts)
#' * `P`: p-value for the overall `Model L.R.` and `d.f.`
#' * `C`: concordance probability between predicted probability and `y`
#' * `Dxy`: Somer's Dxy rank correlation between predicted probability and `y`, = 2(C - 0.5)
#' * `Gamma`:
#' * `Tau-a`:
#' * `R2`: documented [here](https://hbiostat.org/bib/r2.html/); the first element, with the plain `'R2'` name is Nagelkerke's \eqn{R^2}
#' * `Brier`: Brier score. For ordinal models this is computed with respect the the median intercept.
#' * `g`: g-index (Gini's mean difference of linear predictors)
#' * `gr`: g-index on the odds ratio scale
#' * `gp`: g-index on the probability scale
#' * `fail`: `TRUE` if any matrix inversion or failure to converge occurred, `FALSE` otherwise
#' * `coefficients`:
#' * `info.matrix`: a list of 3 elements `a`, `b`, `ab` with `a` being a $k x 2$ matrix for $k$ intercepts, `b` being $p x p$ for $p$ predictors, and `ab` being $k x p$. See [infoMxop()] for easy ways of operating on these 3 elements.
#' * `u`: gradient vector
#' * `iter`: number of iterations required. For some optimization methods this is a vector.
#' * `deviance`: vector of deviances: intercepts-only, intercepts + offset (if `offset` is present), final model (if `x` is used)
#' * `non.slopes`: number of intercepts in the model
#' * `linear.predictors`: vector of linear predictors at the median intercept
#' * `penalty.matrix`: penalty matrix or `NULL`
#' * `weights`: `weights` or `NULL`
#' * `xbar`: vector of column means of `x`, or `NULL` if `transx=FALSE`
#' * `xtrans`: input value of `transx`
#' * `R`: R matrix from QR to be used to rotate parameters back to original scale in the future
#' * `Ri`: inverse of `R`
#' * `opt_method`: input value
#' @md
#' @author Frank Harrell <fh@fharrell.com>
#' @export
#' @keywords models regression logistic
#'
#' @examples
#' \dontrun{
#' # Fit an additive logistic model containing numeric predictors age,
#' # blood.pressure, and sex, assumed to be already properly coded and
#' # transformed
#'
#' fit <- lrm.fit(cbind(age,blood.pressure,sex=='male'), death)
#' }
#' @seealso [lrm()], [stats::glm()], [cr.setup()], [gIndex()], [stats::optim()], [stats::nlminb()], [stats::nlm()],[stats::glm.fit()], [recode2integer()], [Hmisc::qrxcenter()], [infoMxop()]
#'
lrm.fit <-
function(x, y, offset = 0, initial,
opt_method = c('NR', 'nlminb', 'LM', 'glm.fit', 'nlm', 'BFGS', 'L-BFGS-B',
'CG', 'Nelder-Mead'),
maxit = 50, reltol = 1e-10,
abstol = if(opt_method %in% c('NR', 'LM')) 1e10 else 0e0,
gradtol = if(opt_method %in% c('NR', 'LM')) 1e-3 else 1e-5,
factr = 1e7, eps = 5e-4,
minstepsize = 1e-2, trace = 0,
tol = .Machine$double.eps, penalty.matrix = NULL, weights = NULL, normwt = FALSE,
transx = FALSE, compstats = TRUE,
inclpen = TRUE, initglm = FALSE, y.precision=7)
{
cal <- match.call()
opt_method_given <- ! missing(opt_method)
opt_method <- match.arg(opt_method)
penpres <- length(penalty.matrix) && any(penalty.matrix != 0)
original.penalty.matrix <- if(penpres) penalty.matrix
ftdb <- as.integer(getOption('lrm.fit.debug', 0L))
if(ftdb) {
w <- llist(opt_method, length(x), dim(x), length(y), length(offset),
if(! missing(initial)) initial, compstats, ftdb, maxit, labels=FALSE)
prn(w, file='/tmp/z')
}
db <- if(! ftdb) function(...) {} else function(...) cat(..., '\n', file='/tmp/z', append=TRUE)
n <- length(y)
wtpres <- TRUE
if(! length(weights)) {
wtpres <- FALSE
normwt <- FALSE
weights <- rep(1, n)
}
if(length(weights) != n) stop('length of wt must equal length of y')
if(normwt) weights <- weights * n / sum(weights)
storage.mode(weights) <- 'double'
R <- Ri <- NULL
initial.there <- ! missing(initial)
if(missing(x) || length(x) == 0) {
p <- 0L
xname <- NULL
x <- matrix(0e0, nrow=n, ncol=0)
} else {
if(! is.matrix(x)) x <- as.matrix(x)
storage.mode(x) <- 'double'
xname <- colnames(x)
dx <- dim(x)
p <- dx[2]
if(dx[1] != n) stop("x and y must have same number of rows")
# Center X columns then QR-transform them
# See https://betanalpha.github.io/assets/case_studies/qr_regression.html
if(transx) {
w <- qrxcenter(x)
xbar <- w$xbar
x <- w$x
R <- w$R
Ri <- w$Ri
w <- NULL
}
if(length(xname) == 0) xname <- paste("x[", 1 : ncol(x), "]", sep="")
# Modify penalty matrix so that it applies to the QR-transformed beta
# With R (p x p), beta = original scale beta, gamma = beta for transformed x
# beta = R x gamma
# Penalty on LL ignoring -0.5 factor is beta' P beta =
# (R x gamma)' P (R x gamma) = gamma' R'PR gamma
# So change P to R'PR
if(transx && penpres)
penalty.matrix <- t(R) %*% penalty.matrix %*% R
}
# Only consider uniqueness of y values to within 7 decimal places to the right
w <- recode2integer(y, precision=y.precision)
y <- w$y - 1
ylevels <- w$ylevels
ymed <- max(w$whichmedian - 1L, 1L)
ymedian <- w$median
numy <- w$freq
k <- length(ylevels) - 1
iname <- if(k == 1) 'Intercept' else paste('y>=', ylevels[2 : (k + 1)], sep="")
name <- c(iname, xname)
if(opt_method == 'glm.fit' && (k > 1 || penpres))
stop('opt_method="glm.fit" only applies when k=1 and there is no penalty')
if(! length(offset)) offset <- 0e0
if(length(offset) > 1 && (length(offset) != n)) stop('offset and y must have same length')
offset <- rep(offset, length=n)
ofpres <- ! all(offset == 0e0)
storage.mode(offset) <- "double"
if(n < 3) stop("must have >=3 non-missing observations")
nv <- p + k
sumwty <- tapply(weights, y, sum)
sumwt <- sum(sumwty)
if(! wtpres && any(numy != sumwty)) stop('program logic error 1')
sumw <- if(normwt) numy else as.integer(round(sumwty))
if(missing(initial)) {
ncum <- rev(cumsum(rev(sumwty)))[2 : (k + 1)]
pp <- ncum / sumwt
initial <- qlogis(pp) # Pt A
if(ofpres) initial <- initial - mean(offset)
}
if(length(initial) < nv)
initial <- c(initial, rep(0, nv - length(initial)))
loglik <- -2 * sum(sumwty * logb(sumwty / sum(sumwty)))
if(p > 0) {
if(! penpres) penalty.matrix <- matrix(0e0, nrow=p, ncol=p)
if(nrow(penalty.matrix) != p || ncol(penalty.matrix) != p)
stop(paste("penalty.matrix does not have", p, "rows and columns"))
storage.mode(penalty.matrix) <- 'double'
}
else
penalty.matrix <- matrix(0e0, nrow=0, ncol=0)
cont <- switch(opt_method,
BFGS = list(trace=trace, maxit=maxit, reltol=reltol),
'L-BFGS-B' = list(trace=trace, maxit=maxit, factr=factr),
nlminb = list(trace=trace, iter.max=maxit, eval.max=maxit,
rel.tol=reltol, abs.tol=abstol, xf.tol=1e-16),
glm.fit = list(epsilon=reltol, maxit=maxit, trace=trace),
list(trace=trace, maxit=maxit) )
if(p == 0 & ! ofpres) {
loglik <- rep(loglik, 2)
stats <- lrmstats(y, ymed, p, initial[ymed], loglik, 0, weights, sumwt, sumwty)
res <- list(coef=initial,
u=rep(0, k),
stats=stats)
}
envi <- .GlobalEnv
ialpha = 1 : k
rfort <- function(parm, what, penhess=0L, debug=ftdb) {
nv <- length(parm)
p <- nv - k
ibeta <- if(p == 0) integer(0) else - (1 : k)
db('0', n, k, p)
w <- .Fortran(F_lrmll, n, k, p, x, y, offset, weights, penalty.matrix,
as.double(parm[ialpha]), as.double(parm[ibeta]),
logL=numeric(1), grad=numeric(nv),
a=matrix(0e0, k, 2), b=matrix(0e0, p, p), ab=matrix(0e0, k, p),
what=what, ftdb, penhess, salloc=integer(1))
if(w$salloc != 0)
stop('Failed dynamic array allocation in Fortran subroutine lrmll: code ', w$salloc)
w
}
logl <- function(parm, ...) {
db('1', n, k, p)
rfort(parm, 1L)$logL
}
grad <- function(parm, ...) {
db('2', n, k, p)
g <- rfort(parm, 2L)$grad
# Save last computed gradient
if(! outputs_gradient) assign('.lrm_gradient.', g, envir=envi)
-2e0 * g
}
Hess <- function(parm, what='matrix', ...) {
# Last argument to lrmll = penhess = 1 so that penalty matrix is
# included in Hessian so that it's used in Newton-Raphson updating.
# Later for evaluating the Hessian a final time for getting the
# covariance matrix we'll want to suppress penhess
db('3', n, k, p)
h <- rfort(parm, 3L, penhess=1L)[c('a', 'b', 'ab')]
if(what == 'info')
return(list(a = - h$a, b = - h$b, ab = - h$ab,
iname=iname, xname=xname))
h <- infoMxop(h)
if(sparse_hessian_ok) -2e0 * h else -2e0 * Matrix::as.matrix(h)
}
outputs_gradient <- opt_method %in% c('NR', 'LM', 'nlm')
sparse_hessian_ok <- opt_method %in% c('NR', 'LM')
mle <- function(p, init) {
if(opt_method == 'NR') {
opt <- newtonr(init, logl, grad, Hess, n,
objtol = eps,
gradtol = gradtol,
paramtol = abstol,
minstepsize = minstepsize,
tolsolve = tol,
maxit = maxit,
trace = trace)
con <- opt$code
ok <- con == 0
if(ok) {
ll <- opt$obj
cof <- opt$param
gr <- -0.5 * opt$grad
# Compute info matrix (- Hessian)
info <- Hess(cof, what='info')
# This is the information matrix for (delta, gamma) on the centered and QR-transformed
# x without including the penalty matrix (which will be added below after
# transformations) if inclpen is FALSE.
it <- opt$iter
}
}
else if(opt_method == 'LM') {
opt <- levenberg_marquardt(init, logl, grad, Hess, n,
objtol = eps,
gradtol = gradtol,
paramtol = abstol,
tolsolve = tol,
maxit = maxit,
trace = trace)
con <- opt$code
ok <- con == 0
if(ok) {
ll <- opt$obj
cof <- opt$param
gr <- -0.5 * opt$grad
info <- Hess(cof, what='info')
it <- opt$iter
}
}
else if(opt_method == 'nlm') {
obj <- function(parm, ...) {
ob <- logl(parm, ...)
attr(ob, 'gradient') <- grad(parm, ...)
attr(ob, 'hessian') <- Hess(parm, ...)
ob
}
opt <- nlm(obj, init, gradtol=gradtol, iterlim=maxit, print.level=trace,
hessian=FALSE)
ll <- opt$minimum
cof <- opt$estimate
gr <- -0.5 * opt$gradient
info <- Hess(cof, what='info')
it <- opt$iterations
con <- opt$code
ok <- con <= 3
}
else if(opt_method == 'nlminb') {
opt <- nlminb(start=init, objective=logl, gradient=grad, hessian=Hess,
control=cont)
ll <- opt$objective
cof <- opt$par
gr <- .lrm_gradient.
info <- Hess(cof, what='info')
it <- c(iterations=opt$iterations, evaluations=opt$evaluations)
con <- opt$convergence
ok <- con == 0
}
else if(opt_method == 'glm.fit') {
f <- try(glm.fit(cbind(1e0, x), y, family=binomial(),
weights=weights, offset=offset,
singular.ok=FALSE,
control=cont))
if(inherits(f, 'try-error')) {
message('glm.fit failed; consider using default opt_method')
return(structure(list(fail=TRUE), class='lrm'))
}
ll <- f$deviance
cof <- f$coefficients
# grad() took 0.001s for n=10000 p=50
gr <- grad(cof)
info <- crossprod(qr.R(f$qr))
it <- f$iter
con <- 1 - f$converged
ok <- con == 0
} else {
opt <- optim(init, logl, grad,
method=opt_method, control=cont, hessian=FALSE)
ll <- opt$value
cof <- opt$par
gr <- .lrm_gradient.
info <- Hess(cof, what='info')
it <- opt$counts
con <- opt$convergence
ok <- con == 0
}
if(! ok) {
msg <- opt$message
if(! length(msg))
msg <- paste('Iterations and/or function and gradient evaluations:',
paste(it, collapse=' '))
message('optimization did not converge for lrm.fit', '\n', msg,
'\nconvergence code ', con)
return(structure(list(fail=TRUE), class='lrm'))
}
ibeta <- if(p == 0) integer(0) else - (1 : k)
list(logl=ll, alpha=cof[ialpha], beta=cof[ibeta], u=gr,
info=info, iter=it)
} # end mle()
storage.mode(n) <- storage.mode(k) <- storage.mode(p) <- storage.mode(y) <- 'integer'
v <- vc <- NULL
if(maxit == 1) {
loglik <- c(loglik, logl(initial))
if(p == 0) lpmid <- initial[ymed] + offset
else {
lp <- matxv(x, initial, kint=1) + offset
lpmid <- lp - initial[1] + initial[ymed]
}
# Hess() returns Hessian on -2LL scale
# Information matrix is negative Hessian on LL scale
u <- -0.5 * grad(initial)
res <- list(coefficients = initial,
deviance = loglik,
info.matrix = Hess(initial, what='info'),
u = u,
stats = if(compstats) lrmstats(y, ymed, p, lpmid, loglik, u, weights, sumwt, sumwty),
maxit = 1, fail=FALSE, class='lrm')
return(res)
}
if(p == 0 && ! ofpres) {
ml <- mle(0L, initial[1 : k])
if(inherits(ml, 'lrm')) return(ml)
info <- ml$info
}
if(ofpres) {
# Fit model with only intercept(s) and offset
ml <- mle(0L, initial[1 : k])
if(inherits(ml, 'lrm')) return(ml)
loglik <- c(loglik, ml$logl)
res <- list(coef=ml$alpha, u=ml$u, info=ml$info, iter=ml$iter)
initial[1 : k] <- ml$alpha # Pt B
if(p == 0) info <- ml$info
}
# Fit full model
if(p > 0) {
# If k > 1, do like MASS::polr in using glm.fit to get
# initial parameter estimates for ordinal model
if(k > 1 && initglm) {
f <- try(glm.fit(cbind(1e0, x), 1L*(y >= ymed), family=binomial(),
weights=weights, offset=offset,
singular.ok=FALSE))
if(inherits(f, 'try-error') || ! f$converged) {
message('glm.fit failed with initglm')
return(structure(list(fail=TRUE), class='lrm'))
}
# Intercept in this binary Y fit corresponds to Y=ymed
initial[1 : k] <- initial[1 : k] - initial[ymed] + f$coefficients[1]
initial[-(1 : k)] <- f$coefficients[-1]
}
ml <- mle(p, initial)
if(inherits(ml, 'lrm')) return(ml)
loglik <- c(loglik, ml$logl)
delta <- ml$alpha
gamma <- ml$beta
info <- ml$info
if(transx) {
# Let M = matrix(1, nrow=k, ncol=1) %*% matrix(xbar, nrow=1)
# beta = R gamma p x p * p x 1 = p x 1
# alpha = delta - M beta = delta - M R gamma = kx1 - kxp pxp px1
#
# Transform the information matrix from the (delta, gamma) scale to (alpha, beta)
# See https://hbiostat.org/rmsc/mle#qr and https://stats.stackexchange.com/questions/657210
# In the future see the R madness package
# M <- Matrix::Matrix(1, nrow=k, ncol=1) %*% Matrix::Matrix(xbar, nrow=1)
M <- Matrix::Matrix(rep(xbar, each=k), nrow=k)
J <- rbind(cbind(Matrix::Diagonal(k), M ),
cbind(Matrix::Matrix(0e0, nrow=p, ncol=k), Ri))
info <- Matrix::t(J) %*% infoMxop(info) %*% J
}
# Add second derivative of penalty function if needed, on the original scale
if(! inclpen && penpres) {
if(is.list(info) && length(info) == 3) info$b <- info$b - original.penalty.matrix
else info[-(1:k), -(1:k)] <- info[-(1:k), -(1:k)] - original.penalty.matrix
}
# Save predictions before reverting since original x not kept
# x and kof both translated -> x * kof on original scale
kof <- c(delta, gamma)
lp <- matxv(x, kof, kint=1)
lpmid <- lp - kof[1] + kof[ymed]
if(transx) {
# Revert parameters to original x space without centering. R is p x p
# x is reproduced by x %*% solve(R) + matrix(1, nrow=n) %*% matrix(xbar, ncol=1)
# If beta is p x 1 the rotation is R x beta instead of beta %*% t(R)
delta <- matrix(delta, ncol=1)
gamma <- matrix(gamma, ncol=1)
beta <- R %*% gamma
alpha <- delta - sum(beta * xbar)
# In matrix form alpha = delta - M beta = delta - M R gamma where
# M = matrix(1, nrow=k, ncol=1) %*% matrix(xbar, nrow=1)
} else {alpha <- delta; beta <- gamma}
res <- list(coef=c(alpha, beta), u=ml$u, iter=ml$iter)
} else { # p = 0
lp <- rep(res$alpha[1], n)
lpmid <- rep(res$alpha[ymed], n)
}
kof <- res$coef
names(kof) <- name
if(length(res$u)) names(res$u) <- name
if(length(R)) dimnames(R) <- dimnames(Ri) <- list(xname, xname)
if(p == 0) lpmid <- initial[ymed] + offset # initial is defined at Pt A or Pt B above
if(! transx) {
info$iname <- iname
info$xname <- xname
}
retlist <-
list(call = cal,
freq = numy,
ymedian = ymedian,
yunique = ylevels,
sumwty = if(wtpres) sumwty,
stats = if(compstats) lrmstats(y, ymed, p, lpmid, loglik, res$u, weights, sumwt, sumwty),
fail = FALSE,
coefficients = kof,
info.matrix = info,
u = res$u,
iter = res$iter,
deviance = loglik,
non.slopes = k,
linear.predictors = lp,
penalty.matrix = if(p > 0 && penpres) original.penalty.matrix,
weights = if(wtpres) weights,
xbar = if(transx & p > 0) xbar,
xtrans = transx,
R = if(transx & p > 0) R,
Ri = if(transx & p > 0) Ri,
opt_method = opt_method)
class(retlist) <- 'lrm'
retlist
}
# Newton-Raphson MLE with step-halving, initial draft generated by ChatGPT
# The Hessian needs to be computed by the user on the
# final param values after newtonr completes
newtonr <- function(init, obj, grad, hessian, n,
objtol = 5e-4, gradtol = 1e-5, paramtol = 1e-5,
minstepsize = 1e-2,
tolsolve=.Machine$double.eps, maxit = 30, trace=0) {
m <- function(x) max(abs(x))
theta <- init # Initialize the parameter vector
oldobj <- 1e10
objf <- obj(theta)
gradtol <- gradtol * n / 1000.
for (iter in 1:maxit) {
gradient <- grad(theta) # Compute the gradient vector
hess <- hessian(theta) # Compute the Hessian matrix
delta <- try(Matrix::solve(hess, gradient, tol=tolsolve), silent=TRUE) # Compute the Newton-Raphson step
if(inherits(delta, 'try-error'))
return(list(code=2, message='singular Hessian matrix'))
if(trace > 0)
cat('Iteration:', iter, ' -2LL:', format(objf, nsmall=4),
' Max |gradient|:', m(gradient),
' Max |change in parameters|:', m(delta), '\n', sep='')
step_size <- 1 # Initialize step size for step-halving
# Step-halving loop
while (TRUE) {
new_theta <- theta - step_size * delta # Update parameter vector
objfnew <- obj(new_theta)
if(trace > 1)
cat('Old, new, old - new -2LL:', objf, objfnew, objf - objfnew, '\n')
if (! is.finite(objfnew) || (objfnew > objf + 1e-6)) {
# Objective function failed to be reduced or is infinite
step_size <- step_size / 2e0 # Reduce the step size
if(trace > 0) cat('Step size reduced to', step_size, '\n')
if(step_size <= minstepsize) {
msg <- paste('Step size ', step_size, ' has reduced below minstepsize=',
minstepsize,
'without improving log likelihood; fitting stopped')
return(list(code=1, message=msg))
}
} else {
theta <- new_theta # Accept the new parameter vector
oldobj <- objf
objf <- objfnew
break
}
}
# Convergence check - must meet 3 criteria
if((objf <= oldobj + 1e-6 && (oldobj - objf < objtol)) &&
(m(gradient) < gradtol) &&
(m(delta) < paramtol))
return(list(param = theta,
obj = objf,
grad = gradient,
objchange = oldobj - objf,
maxgrad = m(gradient),
maxparamchange = m(delta),
iter=iter, code=0, message=''))
}
msg <- paste('Reached', maxit, 'iterations without convergence\nChange in -2LL:',
oldobj -objf, ' Max |gradient|:', m(gradient),
' Max |change in parameters|:', m(delta))
list(code = 1, message=msg)
}
# Levenberg-Marquardt
levenberg_marquardt <-
function(init, obj, grad, hessian, n,
objtol = 5e-4, gradtol = 1e-5, paramtol = 1e-5,
lambda = 1e-3,
tolsolve=.Machine$double.eps, maxit = 30, trace=0) {
m <- function(x) max(abs(x))
theta <- init
oldobj <- 1e10
objf <- NA # needed in case no H_damped is ever positive definite
g <- grad(theta)
H <- hessian(theta)
gradtol <- gradtol * n / 1000.
for (i in 1 : maxit) {
H_damped <- H + lambda * Matrix::Diagonal(x = Matrix::diag(H)) # Damping term
delta <- try(Matrix::solve(H_damped, g, tol=tolsolve), silent=TRUE)
if(inherits(delta, 'try-error')) {
# Increase lambda if Hessian is ill-conditioned
lambda <- lambda * 10
next
}
theta_new <- theta - delta
objf <- obj(theta_new)
if(trace > 0)
cat('Iteration:', i, ' -2LL:', format(objf, nsmall=4),
' Max |gradient|:', m(g),
' Max |change in parameters|:', m(delta), '\n', sep='')
if(trace > 1) cat('Old, new, old - new -2LL:', oldobj, objf, oldobj - objf, '\n')
if(is.finite(objf) &&
(objf <= oldobj + 1e-6 && (oldobj - objf < objtol)) &&
(m(g) < gradtol) &&
(m(delta) < paramtol)) break
if (is.finite(objf) && (objf < oldobj)) {
# Accept the step and decrease lambda
theta <- theta_new
oldobj <- objf
g <- grad(theta)
H <- hessian(theta)
lambda <- lambda / 10
} else {
# Reject the step and increase lambda
lambda <- lambda * 10
}
}
if(i == maxit) {
msg <- paste('Reached', maxit, 'iterations without convergence\nChange in -2LL:',
oldobj -objf, ' Max |gradient|:', m(g),
' Max |change in parameters|:', m(delta))
return(list(code = 1, message=msg))
}
list(param = theta,
obj = objf,
grad = g,
objchange = oldobj - objf,
maxgrad = m(g),
maxparamchange = m(delta),
iter=i, code=0, message='')
}
lrmstats <- function(y, ymed, p, lp, loglik, u, weights, sumwt, sumwty) {
n <- length(y)
prob <- plogis(lp)
event <- y > (ymed - 1)
nam1 <- c('Obs', 'Max Deriv',
'Model L.R.', 'd.f.', 'P', 'C', 'Dxy',
'Gamma', 'Tau-a', 'R2')
nam2 <- c('Brier', 'g', 'gr', 'gp')
if(p == 0) {
# N, max |u|, LR, df, P, C, Dxy, Gamma, Tau, R2, Brier, g, gr, gp
stats <- c(n, 0, 0, 0, 1, 0.5, rep(0, 3), 0, B=NA, rep(0, 3))
names(stats) <- c(nam1, nam2)
} else {
llnull <- loglik[length(loglik) - 1]
model.lr <- llnull - loglik[length(loglik)]
model.df <- p
model.p <- if(model.df > 0) 1 - pchisq(model.lr, model.df) else 1e0
r2 <- 1 - exp(- model.lr / sumwt)
r2.max <- 1 - exp(- llnull / sumwt)
r2 <- r2 / r2.max
r2m <- R2Measures(model.lr, model.df, sumwt, sumwty)
g <- GiniMd(lp)
gp <- GiniMd(prob)
a <- suppressWarnings(
survival::concordancefit(y, lp, weights=weights, reverse=FALSE))
conc <- a$count['concordant']
disc <- a$count['discordant']
tiedx <- a$count['tied.x']
pairs <- sum(as.double(a$count))
rankstats <- c(C = a$concordance, # (conc + 0.5 * tiedx) / (conc + disc + tiedx)
Dxy = (conc - disc) / (conc + disc + tiedx),
Gamma = (conc - disc) / (conc + disc),
Tau_a = (conc - disc) / pairs)
stats <- c(n, max(abs(u)), model.lr, model.df,
model.p, rankstats,
r2, r2m, B=NA, g, exp(g), gp)
nam <- c(nam1, names(r2m), nam2)
names(stats) <- ifelse(nam == 'R2m', names(r2m), nam)
}
# B <- mean((prob - event)^2)
B <- sum(weights*(prob - event)^2) / sum(weights)
stats['Brier'] <- B
if(any(weights != 1.0)) stats <- c(stats, 'Sum of Weights'=sumwt)
stats
}
utils::globalVariables('.lrm_gradient.')
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.