R/rmsMisc.s

Defines functions removeFormulaTerms removeFormulaTerms setPb nobs.rms AIC.rms logLik.Gls logLik.rms logLik.ols formatNP reListclean prStats html.naprint.delete latex.naprint.delete prModFit rmsArgs vif univarLR Newlevels.rms Newlevels Newlabels.rms Newlabels print.lrtest lrtest Penalty.setup Penalty.matrix rms.levels param.order interactions.containing combineRelatedPredictors related.predictors Getlimi Getlim oos.loglik.Glm oos.loglik.psm oos.loglik.cph oos.loglik.lrm oos.loglik.ols oos.loglik vcov.rms vcov.orm vcov.psm vcov.cph vcov.ols vcov.lrm DesignAssign

Documented in AIC.rms combineRelatedPredictors DesignAssign formatNP Getlim Getlimi html.naprint.delete interactions.containing latex.naprint.delete logLik.Gls logLik.ols logLik.rms lrtest Newlabels Newlabels.rms Newlevels Newlevels.rms nobs.rms oos.loglik oos.loglik.cph oos.loglik.Glm oos.loglik.lrm oos.loglik.ols oos.loglik.psm param.order Penalty.matrix Penalty.setup print.lrtest prModFit prStats related.predictors reListclean removeFormulaTerms rmsArgs setPb univarLR vcov.cph vcov.lrm vcov.ols vcov.orm vcov.psm vcov.rms vif

#Miscellaneous functions to retrieve characteristics of design


DesignAssign <- function(atr, non.slopes, Terms) {
  ## Given Design attributes and number of intercepts creates R
  ## format assign list.

  ll <- if(missing(Terms)) atr$name else attr(Terms,'term.labels')
  if(! length(ll)) return(list())
  nv     <- length(ll)
  params <- sapply(atr$nonlinear, length)  ## d.f. per predictor
  asc    <- atr$assume.code
  assign <- list()
  j <- non.slopes + 1
  if(length(params)) for(i in 1 : length(ll)) {
    if(asc[i] == 8) next
    assign[[ll[i]]] <- j : (j + params[i] - 1)
    j <- j + params[i]
  }
  assign
}
  
#Function to return variance-covariance matrix, optionally deleting
#rows and columns corresponding to parameters such as scale parameters
#in parametric survival models (if regcoef.only=TRUE)

vcov.lrm <- function(object, regcoef.only=TRUE, intercepts='all', ...) {
  if(length(intercepts) == 1 && is.character(intercepts) &&
     intercepts %nin% c('all', 'none'))
    stop('if character, intercepts must be "all" or "none"')

  if(!length(intercepts) ||
     (length(intercepts) == 1) && intercepts == 'all')
    return(vcov.rms(object, regcoef.only=regcoef.only, ...))
  ns <- num.intercepts(object)
  v <- object$var
  p <- ncol(v)
  nx <- p - ns
  if(intercepts == 'none') intercepts <- integer(0)
  i <- if(nx == 0) intercepts else c(intercepts, (ns+1):p)
  v[i, i, drop=FALSE]
}

vcov.ols <- function(object, regcoef.only=TRUE, ...)
  vcov.rms(object, regcoef.only=regcoef.only, ...)

vcov.cph <- function(object, regcoef.only=TRUE, ...)
  vcov.rms(object, regcoef.only=regcoef.only, ...)

vcov.psm <- function(object, regcoef.only=TRUE, ...)
  vcov.rms(object, regcoef.only=regcoef.only, ...)

vcov.orm <- function(object, regcoef.only=TRUE,
                     intercepts='mid', ...) {
  v <- object$var
  if(! length(intercepts)) return(v)
  li1 <- length(intercepts) == 1
  iat <- attr(v, 'intercepts')  # handle fit.mult.impute (?), robcov
  # robcov re-writes var object and uses all intercepts
  iref <- object$interceptRef
  if(is.numeric(intercepts) && li1 &&
     intercepts == iref) intercepts <- 'mid'
  if(! length(iat)) {
    if(li1 && intercepts == 'mid') {
      i <- c(iref, (num.intercepts(object, 'var') + 1) : nrow(v))
      return(object$var[i, i, drop=FALSE])
    }
    return(vcov.lrm(object, regcoef.only=regcoef.only,
                    intercepts=intercepts, ...))
  }
  
  if(li1 && intercepts == 'none')
    return(object$var[-(1 : length(iat)),
                      -(1 : length(iat)), drop=FALSE])
    if(li1 && intercepts == 'mid' && length(iat) == 1) return(object$var)
  
  iref <- object$interceptRef
  info <- object$info.matrix
  isbootcov <- length(object$boot.coef)
  ns <- num.intercepts(object)
  p  <- ncol(info)
  ns <- num.intercepts(object)
  nx <- p - ns
  scale <- attr(info, 'scale')
  name <- names(coef(object))
  if(length(scale) && (! is.character(intercepts) ||
                       (li1 && intercepts == 'all'))) {
    xbar  <- scale$mean
    xsd   <- scale$sd
    trans <- 
      rbind(cbind(diag(ns), matrix(0, nrow=ns, ncol=nx)),
            cbind(-matrix(rep(xbar / xsd, ns), ncol=ns),
                  diag(1 / as.vector(xsd))))
  }
  
                       
  if(li1 && is.character(intercepts)) {
    if(intercepts != 'mid' && isbootcov)
      stop('intercepts must be "mid" if object produced by bootcov')
      switch(intercepts,
             mid = return(object$var),
             all = {
               if(! length(scale)) {
                 v <- as.matrix(solve(info))
                 dimnames(v) <- list(name, name)
                 return(v)
               }
               kint <- num.intercepts(object)
               v <- t(trans) %*% as.matrix(solve(info)) %*% trans
               dimnames(v) <- list(name, name)
               return(v)
             },
             none= return(object$var[-1, -1, drop=FALSE]) )
  }
  if(isbootcov)
    stop('intercepts must be "mid" if object produced by bootcov')
  
  i <- if(nx == 0) intercepts else c(intercepts, (ns+1):p)
  v <- if(length(scale))
    (t(trans) %*% as.matrix(solve(info)) %*% trans)[i,i]
  else as.matrix(solve(info)[i,i])
  dimnames(v) <- list(name[i], name[i])
  v
}

vcov.rms <- function(object, regcoef.only=TRUE, intercepts='all', ...)
  {
    cov <- object$var
    if(!length(cov)) stop("fit does not have variance-covariance matrix")
    if(regcoef.only) {
      p <- length(object$coefficients)
      cov <- cov[1:p, 1:p, drop=FALSE]
    }
    if(length(intercepts) && intercepts == 'none') {
      ns <- num.intercepts(object)
      if(ns > 0) cov <- cov[-(1:ns), -(1:ns), drop=FALSE]
    }
    cov
  }



## Functions for Out Of Sample computation of -2 log likelihood
## evaluated at parameter estimates of a given fit

oos.loglik <- function(fit, ...) UseMethod("oos.loglik")

oos.loglik.ols <- function(fit, lp, y, ...) {
  sigma2 <- sum(fit$residuals^2)/length(fit$residuals)
  if(missing(lp)) {
	n <- length(fit$residuals)
	n*logb(2*pi*sigma2)+n
  } else {
	s <- !is.na(lp + y)
	lp <- lp[s]; y <- y[s]
	n <- length(lp)
	sse <- sum((y - lp)^2)
	n*logb(2*pi*sigma2) + sse/sigma2
  }
}

oos.loglik.lrm <- function(fit, lp, y, ...) {
  if(missing(lp)) return(fit$deviance[length(fit$deviance)])
  ns <- fit$non.slopes
  if(ns > 1) stop('ordinal y case not implemented')
  y <- as.integer(as.factor(y)) - 1
  s <- !is.na(lp + y)
  lp <- lp[s];  y <- y[s]
  p <- plogis(lp)
  -2*sum(ifelse(y==1, logb(p), logb(1-p)))
}
  
oos.loglik.cph <- function(fit, lp, y, ...) {
  if(missing(lp)) return(-2*fit$loglik[2])
  else stop('not implemented for cph models')
}

oos.loglik.psm <- function(fit, lp, y, ...) {
  if(missing(lp)) return(-2*fit$loglik[2])
  else stop('not implemented for psm models')
}

oos.loglik.Glm <- function(fit, lp, y, ...)
  if(missing(lp)) deviance(fit) else
  glm.fit(x=NULL, y=as.vector(y), offset=lp, family=fit$family)$deviance

  
#Function to retrieve limits and values, from fit (if they are there)
#or from a datadist object.  If need.all=F and input is coming from datadist,
#insert columns with NAs for variables not defined
#at is attr(fit$terms,"Design") (now fit$Design)

Getlim <- function(at, allow.null=FALSE, need.all=TRUE) {
nam    <- at$name[at$assume!="interaction"]
limits <- at$limits
values <- at$values

XDATADIST <- .Options$datadist
X <- lims <- vals <- NULL
if(! is.null(XDATADIST)) {
  X <- if(inherits(XDATADIST, 'datadist')) XDATADIST
       else
         if(exists(XDATADIST)) eval(as.name(XDATADIST))
  if(! is.null(X)) {
    lims <- X$limits
    if(is.null(lims)) stop(paste("options(datadist=",XDATADIST,
                                 ") not created with datadist"))
    vals <- X$values
    }
  }

if((length(X) + length(limits)) == 0) {
  if(allow.null) {
    lims <- list()
    for(nn in nam) lims[[nn]] <- rep(NA,7)
    lims <- structure(lims, class="data.frame", 
      row.names=c("Low:effect","Adjust to", "High:effect", "Low:prediction",
		  "High:prediction","Low","High"))
    return(list(limits=lims, values=values))
  }
  stop("no datadist in effect now or during model fit")
}

na <- if(length(limits))
  sapply(limits, function(x) all(is.na(x))) else rep(TRUE, length(nam))
if(length(lims) && any(na)) for(n in nam[na]) { #if() assumes NA stored in fit
						# for missing vars
  z <- limits[[n]]
  u <- if(match(n, names(lims), 0) > 0) lims[[n]] else NULL
  # This requires exact name match, not substring match
  if(is.null(u)) {
    if(need.all) stop(paste("variable",n,
	"does not have limits defined in fit or with datadist"))
    else limits[[n]] <- rep(NA,7)    # Added 28 Jul 94
  }
  else limits[[n]] <- u
}
limits <- structure(limits, class="data.frame", 
   row.names=c("Low:effect","Adjust to", "High:effect", "Low:prediction",
		"High:prediction","Low","High"))

if(length(vals)) values <- c(values, 
	vals[match(names(vals),nam,0)>0 & match(names(vals),names(values),0)==0]
	)   # add in values from datadist corresponding to vars in model
            # not already defined for model

list(limits=limits, values=values)
}

#Function to return limits for an individual variable, given an object
#created by Getlim

Getlimi <- function(name, Limval, need.all=TRUE)
{
   lim <- if(match(name, names(Limval$limits), 0) > 0) 
     Limval$limits[[name]] else NULL
   if(is.null(Limval) || is.null(lim) || all(is.na(lim))) {
      if(need.all) stop(paste("no limits defined by datadist for variable",
			name))
      return(rep(NA,7))
   }
lim
}

#Function to return a list whose ith element contains indexes
#of all predictors related, indirectly or directly, to predictor i
#Predictor i and j are related indirectly if they are related to
#any predictors that interact
#Set type="direct" to only include factors interacting with i
#This function is used by nomogram.

related.predictors <- function(at, type=c("all","direct"))
{
  type <- match.arg(type)
  f <- sum(at$assume.code < 9)
  if(any(at$assume.code == 10)) stop("does not work with matrix factors")
  ia <- at$interactions
  x <- rep(NA,f)
  names(x) <- at$name[at$assume.code < 9]
  mode(x) <- "list"
  if(length(ia)==0)
    {
      for(i in 1:f) x[[i]] <- integer(0)
      return(x)
    }
  for(i in 1:f)
    {
      r <- integer(0)
      for(j in 1:ncol(ia))
        {
          w <- ia[,j]
          if(any(w==i)) r <- c(r, w[w>0 & w!=i])
        }
      x[[i]] <- r
    }
  if(type=="direct") return(x)
  
  while(TRUE)
    {
      bigger <- FALSE
      for(j in 1:f)
        {
          xj <- x[[j]]
          y <- unlist(x[xj])
          y <- y[y != j]
          new <- unique(c(y, xj))
          bigger <- bigger | length(new) > length(xj)
          x[[j]] <- new
        }
      if(!bigger) break
    }
  x
}

#Function like related.predictors(..., type='all') but with new
# "super" predictors created by combining all indirected related
# (through interactions) predictors into a vector of predictor numbers
# with a new name formed from combining all related original names

combineRelatedPredictors <- function(at)
  {
    nam <- at$name
    r <- related.predictors(at)
    newnames <- newnamesia <- components <- list()
    pused <- rep(FALSE, length(nam))
    k <- 0
    for(i in (1:length(nam))[at$assume.code != 9])
      {
        if(!pused[i])
          {
            comp <- i
            nn   <- nam[i]
            ri   <- r[[i]]
            ianames <- character(0)
            ic <- interactions.containing(at, i)
            if(length(ic))
              {
                comp <- c(comp, ic)
                ianames <- nam[ic]
              }
            if(length(ri))
              {
                comp <- c(comp, ri)
                nn   <- c(nn,   nam[ri])
                for(j in ri)
                  {
                    pused[j] <- TRUE
                    ic <- interactions.containing(at, j)
                    if(length(ic))
                      {
                        comp <- c(comp, ic)
                        ianames <- c(ianames, nam[ic])
                      }
                  }
              }
            k <- k + 1
            components[[k]] <- unique(comp)
            newnames[[k]]   <- unique(nn)
            newnamesia[[k]] <- unique(c(nn, ianames))
          }
      }
    list(names=newnames, namesia=newnamesia, components=components)
  }
    

#Function to list all interaction term numbers that include predictor
#pred as one of the interaction components

interactions.containing <- function(at, pred) {
ia <- at$interactions
if(length(ia)==0) return(NULL)
name <- at$name
parms <- at$parms
ic <- NULL
for(i in (1:length(at$assume.code))[at$assume.code==9]) {
    terms.involved <- parms[[name[i]]][,1]
    if(any(terms.involved==pred)) ic <- c(ic, i)
}
ic
}

#Function to return a vector of logical values corresponding to
#non-intercepts, indicating if the parameter is one of the following types:
# term.order  Meaning
# ----------  -----------------
#     1       all parameters
#     2       all nonlinear or interaction parameters
#     3       all nonlinear parameters (main effects or interactions)
#     4       all interaction parameters
#     5       all nonlinear interaction parameters

param.order <- function(at, term.order) {	#at=Design attributes
if(term.order==1) return(rep(TRUE,length(at$colnames)))
nonlin <- unlist(at$nonlinear[at$name[at$assume!="strata"]]) # omit strat
ia <- NULL
for(i in (1:length(at$name))[at$assume!="strata"])
  ia <- c(ia, rep(at$assume[i]=="interaction",length(at$nonlinear[[i]])))
if(term.order==5) nonlin & ia else if(term.order==4) ia else
if(term.order==3) nonlin else nonlin | ia
}


#	rms.levels
#		Make each variable in an input data frame that is a
#		factor variable in the model be a factor variable with
#		the levels that were used in the model.  This is primarily
#		so that row insertion will work right with <-[.data.frame
#	
#at=Design attributes

rms.levels <- function(df, at)
{
  ac <- at$assume.code
  for(nn in names(df))
    {
      j <- match(nn, at$name, 0)
      if(j>0)
        {
          if((ac[j]==5 | ac[j]==8) & length(lev <- at$parms[[nn]]))
            df[[nn]] <- factor(df[[nn]], lev)
        }
    }
  df
}


#Function to return a default penalty matrix for penalized MLE,
#according to the design attributes and a design matrix X

Penalty.matrix <- function(at, X)
{
  d1 <- dimnames(X)[[2]][1]
  if(d1 %in% c('Intercept', '(Intercept)')) X <- X[, -1, drop=FALSE]
  
  d <- dim(X)
  n <- d[1]; p <- d[2]
  center <- as.vector(rep(1 / n, n) %*% X)   # see scale() function
  v <- as.vector(rep(1 / (n - 1), n) %*%
                 (X - rep(center, rep(n, p)))^2)
  
  pen <- if(p == 1) as.matrix(v) else as.matrix(diag(v))    
  ## works even if X one column

  is <- 1
  ac <- at$assume
  for(i in (1 : length(at$name))[ac != "strata"]) {
    len <- length(at$nonlinear[[i]])
    ie <- is + len - 1
    if(ac[i] == "category") pen[is : ie, is : ie] <- diag(len) - 1 / (len + 1)
    is <- ie + 1
  }
  pen
}

#Function to take as input a penalty specification of the form
#penalty=constant or penalty=list(simple=,nonlinear=,interaction=,
#nonlinear.interaction=) where higher order terms in the latter notation
#may be omitted, in which case their penalty factors are taken from lower-
#ordered terms.  Returns a new penalty object in full list form along
#with a full vector of penalty factors corresponding to the elements
#in regression coefficient vectors to be estimated

Penalty.setup <- function(at, penalty)
{
  if(!is.list(penalty))
    penalty <- list(simple=penalty, nonlinear=penalty,
                    interaction=penalty, nonlinear.interaction=penalty)
  tsimple <- penalty$simple
  if(!length(tsimple)) tsimple <- 0
  tnonlinear <- penalty$nonlinear
  if(!length(tnonlinear)) tnonlinear <- tsimple
  tinteraction <- penalty$interaction
  if(!length(tinteraction)) tinteraction <- tnonlinear
  tnonlinear.interaction <- penalty$nonlinear.interaction
  if(!length(tnonlinear.interaction)) tnonlinear.interaction <- tinteraction
  
  nonlin <- unlist(at$nonlinear[at$name[at$assume!='strata']])
  ia <- NULL
  for(i in (1:length(at$name))[at$assume!='strata'])
    ia <- c(ia, rep(at$assume[i]=='interaction',length(at$nonlinear[[i]])))
  nonlin.ia <- nonlin & ia
  nonlin[nonlin.ia] <- FALSE
  ia[nonlin.ia] <- FALSE
  simple <- rep(TRUE, length(ia))
  simple[nonlin | ia | nonlin.ia] <- FALSE
  penfact <- tsimple*simple + tnonlinear*nonlin + tinteraction*ia +
    tnonlinear.interaction*nonlin.ia
  list(penalty=list(simple=tsimple, nonlinear=tnonlinear,
         interaction=tinteraction,nonlinear.interaction=tnonlinear.interaction),
       multiplier=penfact)
}

#Function to do likelihood ratio tests from two models that are
# (1) nested and (2) have 'Model L.R.' components of the stats
# component of the fit objects
# For models with scale parameters, it is also assumed that the
# scale estimate for the sub-model was fixed at that from the larger model

lrtest <- function(fit1, fit2)
{
  if(length(fit1$fail) && fit1$fail)
    stop('fit1 had failed')
  if(length(fit2$fail) && fit2$fail)
    stop('fit2 had failed')
  
  s1 <- fit1$stats
  s2 <- fit2$stats
  
  if(!length(s1))
    s1 <- c('Model L.R.'=fit1$null.deviance - fit1$deviance,
            'd.f.'=fit1$rank - (any(names(coef(fit1))=='(Intercept)')))
  if(!length(s2))
    s2 <- c('Model L.R.'=fit2$null.deviance - fit2$deviance,
            'd.f.'=fit2$rank - (any(names(coef(fit2))=='(Intercept)')))
  
  chisq1 <- s1['Model L.R.']
  chisq2 <- s2['Model L.R.']
  if(length(chisq1)==0 || length(chisq2)==2) 
    stop('fits do not have stats component with "Model L.R." or deviance component')
  df1 <- s1['d.f.']
  df2 <- s2['d.f.']
  if(df1==df2) stop('models are not nested')

  lp1 <- length(fit1$parms);  lp2 <- length(fit2$parms)
  if(lp1 != lp2) warning('fits do not have same number of scale parameters') else 
  if(lp1 == 1 && abs(fit1$parms-fit2$parms)>1e-6)
    warning('fits do not have same values of scale parameters.\nConsider fixing the scale parameter for the reduced model to that from the larger model.')

  chisq <- abs(chisq1-chisq2)
  dof   <- abs(df1-df2)
  p     <- 1-pchisq(chisq,dof)

  r     <- c(chisq,dof,p)
  names(r) <- c('L.R. Chisq','d.f.','P')
  structure(list(stats=r,
                 formula1=formula(fit1),
                 formula2=formula(fit2)),
            class='lrtest')
}

print.lrtest <- function(x, ...)
{
  f1 <- x$formula1
  f2 <- x$formula2
  attributes(f1) <- NULL
  attributes(f2) <- NULL
  cat('\nModel 1: '); print(f1)
  cat('Model 2: '); print(f2); cat('\n')
  print(x$stats)
  cat('\n')
  invisible()
}


Newlabels <- function(fit, ...) UseMethod('Newlabels')

Newlabels.rms <- function(fit, labels, ...)
{
  at <- fit$Design
  nam <- names(labels)
  if(length(nam)==0)
    {
      if(length(labels)!=length(at$name))
        stop('labels is not a named vector and its length is not equal to the number of variables in the fit')
      nam <- at$name
    } 
  i <- match(nam, at$name, nomatch=0)
  
  if(any(i==0))
    {
      warning(paste('the following variables were not in the fit and are ignored:\n',
                    paste(nam[i==0],collapse=' ')))
      labels <- labels[i>0]
      i <- i[i>0]
    }
  
  at$label[i] <- labels
  
  fit$Design <- at
  fit
}

Newlevels <- function(fit, ...) UseMethod('Newlevels')

Newlevels.rms <- function(fit, levels, ...)
{
  at <- fit$Design
  nam <- names(levels)
  if(length(nam)==0) stop('levels must have names')

  i <- match(nam, at$name, nomatch=0)
  
  if(any(i==0))
    {
      warning(paste('the following variables were not in the fit and are ignored:\n',
                    paste(nam[i==0],collapse=' ')))
      nam <- nam[i>0]
    }
  
  for(n in nam)
    {
      prm <- at$parms[[n]]
      if(length(prm)!=length(levels[[n]]))
        stop(paste('new levels for variable',
                   n,'has the wrong length'))

      levs <- levels[[n]]
      if(length(at$values[[n]])) at$values[[n]] <- levs
      if(length(at$limits))
        {
          m <- match(at$limits[[n]], at$parms[[n]])
          if(is.factor(at$limits[[n]]))
            attr(at$limits[[n]],'levels') <- levs
          else
            at$limits[[n]] <- levs[m]
        }
      at$parms[[n]] <- levs
    }
  
  fit$Design <- at
  fit
}

univarLR <- function(fit)
{
  ## Computes all univariable LR chi-square statistics
  w <- as.character(attr(fit$terms,'variables'))
  w <- w[-1]
  p <- length(w)-1
  stats <- P <- double(p)
  dof <- nobs <- integer(p)
  for(i in 1:p)
    {
      stat <- update(fit, as.formula(paste(w[1],w[i+1],sep='~')))$stats
      stats[i] <- stat['Model L.R.']
      dof[i]   <- stat['d.f.']
      P[i]     <- stat['P']
      nobs[i]  <- stat['Obs']
    }
  data.frame(LR=stats, 'd.f.'=dof, P=P, N=nobs,
             row.names=w[-1], check.names=FALSE)
}

vif <- function(fit)
{
  v <- vcov(fit, regcoef.only=TRUE)
  nam <- dimnames(v)[[1]]
  ns <- num.intercepts(fit)
  if(ns>0) {
    v <- v[-(1:ns),-(1:ns),drop=FALSE]
    nam <- nam[-(1:ns)]
  }
  d <- diag(v)^.5
  v <- diag(solve(v/(d %o% d)))
  names(v) <- nam
  v
}

## Returns a list such that variables with no = after them get the value NA
## For handling ... arguments to Predict, summary, nomogram, gendata,
## survplot.rms, ...
rmsArgs <- function(.object, envir=parent.frame(2))
  {
    if(length(.object) < 2) return(NULL)
    .names <- names(.object)[-1]
    ## See if no variables given with = after their names
    if(!length(.names)) .names <- rep('', length(.object)-1)
    .n <- length(.names)
    .vars  <- sapply(.object, as.character)[-1]
    .res <- vector('list', .n)
    for(.i in 1:.n)
      {
        if(.names[.i] == '')
          {
            .names[.i] <- .vars[.i]
            .res[[.i]] <- NA
          }
        else .res[[.i]] <- eval(.object[[.i+1]], envir=envir)
      }
    names(.res) <- .names
    .res
  }

## General function to print model fit objects using latex, html, or regular
## print (the default)

prModFit <- function(x, title, w, digits=4, coefs=TRUE, footer=NULL,
                     lines.page=40, long=TRUE, needspace, subtitle=NULL, ...) {
  lang   <- prType()
  specs  <- markupSpecs[[lang]]
  transl <- switch(lang,
                   latex = latexTranslate,
                   html  = htmlTranslate,
                   plain = function(x) x)

#  cca  <- htmlSpecial('combiningcircumflexaccent')
  nbsp <- htmlSpecial('nbsp')
  gt   <- transl('>')
  vbar <- transl('|')
  chi2 <- specs$chisq()
  beta <- htmlGreek('beta')
  
  R <- character(0)

  bverb <- function() {
    switch(lang,
           html  = '<pre>',
           latex = '\\begin{verbatim}',
           plain = NULL)
    }
  
  everb <- function()
    switch(lang,
           html  = '</pre>',
           latex = '\\end{verbatim}',
           plain = NULL)
  
  skipt  <- function(n=1) {
    if(n==0) return(character(0))
    if(n == 1) return('')
    specs$lineskip(n)
  }

  catl  <- function(x, skip=1, bold=FALSE, verb=FALSE, pre=0,
                    center=FALSE, indent=FALSE) {
    if(lang == 'latex') {
      if(verb)
        c('\\begin{verbatim}', skipt(pre),
          x,
          skipt(skip),
          '\\end{verbatim}')
      else
        c(skipt(pre),
          paste0(
            if(center) '\\centerline{'
            else if(!indent) '\\noindent ',
            if(bold) '\\textbf{',
            x,
            if(bold) '}',
            if(center) '}'),
          skipt(skip))
    } else if(lang == 'html') {
      if(verb)
        c('<pre>', skipt(pre),
          x,
          skipt(skip),
          '</pre>')
      else
        c(skipt(pre),
          paste0(if(center) '<div align=center>' else '<p>',
                 if(bold) '<strong>',
                 x,
                 if(bold) '</strong>',
                 if(center) '</div>' else '</p>'),
          skipt(skip))
    }
    else c(paste0(skipt(pre), x), skipt(skip))
  }
  latexVector <- function(x, ...)
    latexTabular(t(x), helvetica=FALSE, ...)
  
  if(length(x$fail) && x$fail) {
    return(catl('Model Did Not Converge.  No summary provided.',
                bold=TRUE, pre=1, verb=TRUE))
  }

  R <- character(0)
  
  if(! missing(needspace) && lang == 'latex')
    R <- paste0('\\Needspace{', needspace, '}')

  lsub <- length(subtitle)
  if(title != '') R <- c(R, catl(title, pre=1, bold=TRUE,
                                 skip=1))
  ## was skip=if(lsub) 0 else 1
  if(lsub)
    for(i in lsub) R <- c(R, catl(subtitle[i], bold=FALSE, pre=1))
  
  if(long) {
    R <- c(R, bverb(), deparse(x$call), everb(), '')
    ## dput(x$call) didn't work with rmarkdown because dput has no append=
  }

  for(z in w) {
    type <- z$type
    obj  <- z[[2]]
    titl <- z$title
    tex  <- z$tex
    if(! length(tex)) tex <- FALSE
    if(type == 'naprint.delete') {
      if(lang == 'latex') {
        type <- 'latex.naprint.delete'
        tex <- TRUE
      }
      if(lang == 'html') type <- 'html.naprint.delete'
    }
    
    preskip <- z$preskip
    if(! length(preskip)) preskip <- 0
    if(! tex && length(titl)) R <- c(R, '', catl(titl, pre=preskip, skip=1))
    if(type == 'stats') {
      R <- c(R, prStats(obj[[1]], obj[[2]], lang=lang))
    } else if(type == 'coefmatrix') {
      if(coefs) {
        pad <- function(x)
          switch(lang, 
                 latex = paste0('~', x, '~'),
                 html  = paste0(nbsp, x),
                 plain  = x)
        betan <- switch(lang,
                        plain = 'Beta',
                        html  = htmlGreek('beta'),
                        latex = '$\\hat{\\beta}$')
                        
        B   <- obj$bayes
        if(length(B)) {
          U <- matrix('', nrow=nrow(B), ncol=ncol(B))
          for(i in 1:ncol(B)) {
            dig <- if(colnames(B)[i] == 'Symmetry') 2 else digits
            U[, i] <- pad(formatNP(B[, i], dig, lang=lang))
          }
          pn <- switch(lang, plain='Pr(Beta>0)',
                       html = paste0('Pr(', betan, transl('>'), '0)'),
                       latex = 'Pr$(\\beta>0)$')
          coltrans <- c(Mean     = paste('Mean', betan),
                        Median   = paste('Median', betan),
                        Mode     = paste('Mode', betan),
                        SE       = 'S.E.',
                        Lower    = 'Lower',
                        Upper    = 'Upper',
                        P        = pn,
                        Symmetry = 'Symmetry')
          colnames(U) <- coltrans[colnames(B)]
          rownames(U) <- rownames(B)
          betanames   <- rownames(B)
        }
        else  {
        errordf <- obj$errordf
        beta <- obj$coef
        betanames <- names(beta)
        se   <- obj$se
        Z    <- beta / se
        P    <- if(length(errordf)) 2 * (1 - pt(abs(Z), errordf))
                else
                  1 - pchisq(Z ^ 2, 1)

        U    <- cbind('Coef' =
                        pad(formatNP(beta, digits, lang=lang)),
                      'S.E.' =
                        pad(formatNP(se,   digits, lang=lang)),
                      'Wald Z'  =
                        formatNP(Z,    2, lang=lang),
                      'Pr(>|Z|)' =
                        formatNP(P, 4, lang=lang, pvalue=TRUE))
        if(lang == 'latex')
          colnames(U) <- c('$\\hat{\\beta}$', 'S.E.', 'Wald $Z$',
                           'Pr$(>|Z|)$')
        else
          if(lang == 'html')
            colnames(U) <- c(htmlGreek('beta'),   # did have cca
                             'S.E.', 'Wald <i>Z</i>',
                             paste0('Pr(', gt, vbar, '<i>Z</i>', vbar, ')'))
        if(length(errordf))
          colnames(U)[3:4] <-
            switch(lang,
                   latex = c('$t$', 'Pr$(>|t|)$'),
                   html  = c('<i>t</i>', paste0('Pr(', gt, vbar, '<i>t</i>',
                                                vbar, ')')),
                   plain = c('t',   'Pr(>|t|)') )

        rownames(U) <- betanames

        if(length(obj$aux)) {
          U <- cbind(U, formatNP(obj$aux, digits, lang=lang))
          colnames(U)[ncol(U)] <- obj$auxname
        }
        }
        if(lang %in% c('latex', 'html')) {
          R <- c(R, skipt(1))
          rownames(U) <- transl(betanames)
          
          if(is.numeric(coefs)) {
            U <- U[1:coefs,,drop=FALSE]
            U <- rbind(U, rep('', ncol(U)))
            rownames(U)[nrow(U)] <- if(lang == 'html') '&hellip;' else '\\dots'
          }
          ## Translate interaction symbol (*) to times symbol
          rownames(U) <- gsub('*', specs$times, rownames(U), fixed=TRUE)
 
          if(! missing(needspace) && lang == 'latex')
            R <- c(R, paste0('\\Needspace{', needspace, '}'))

          if(lang == 'latex') 
            R <- c(R,   # was capture.output(latex())
                   capture.output(latex(U, file='',
                                        first.hline.double=FALSE,
                                        table=FALSE, longtable=TRUE,
                                        lines.page=lines.page,
                                        col.just=rep('r',ncol(U)), rowlabel='',
                                        already.math.col.names=TRUE,
                                        append=TRUE)))
          else {
            al <- paste(rep('r', ncol(U)), collapse='')
            R <- c(R, as.character(
                        htmlTable::htmlTable(U,
                                             css.cell = 'min-width: 7em;',
                                             align=al, align.header=al,
                                             # rowlabel='',
                                             escape.html=FALSE)))
            }
        } else {
          if(is.numeric(coefs)) {
            U <- U[1:coefs,,drop=FALSE]
            U <- rbind(U, rep('', ncol(U)))
            rownames(U)[nrow(U)] <- '. . .'
          }
          R <- c(R, '', capture.output(print(U, quote=FALSE)), '')
        }
      }   ## end if(coefs)
    }     ## end coefmatrix
    else {
      if(tex) {    ### ??? how does this apply to html?
        R <- c(R, '\\begin{center}',
               if(length(titl)) c(titl, '\n'))
      } else {
        R <- c(R,  skipt(preskip))
      }
      R <- c(R,
             if(type == 'html.naprint.delete')
               do.call(type, obj)
             else
               if(type == 'latex.naprint.delete')
                 capture.output(do.call(type,
                                        c(obj, list(file=''))))
             else
               if(type == 'print')
                 c(bverb(),
                   capture.output(do.call(type,
                                          c(obj, list(quote=FALSE)))), everb())
             else
               do.call(type, obj),
             ## unlike do.call, eval(call(...)) dispatches on class of ...
             if(tex) '\\end{center}' else ''
      )
    }
  }
  if(length(footer))
    R <- c(R, paste(specs$smallskip, transl(footer)))

  if(getOption('rmsdebug', FALSE))
    cat(R, sep='\n', append=TRUE, file='/tmp/rmsdebug.txt')

  switch(lang,
         html  = rendHTML(R),
         latex = cat(R, sep='\n'),
         plain = cat(R, sep='\n'))
}

latex.naprint.delete <- function(object, file='', append=TRUE, ...) {
  lg <- length(g <- object$nmiss)
  if(file != '') sink(file, append=append)
  if(lg) {
    cat("Frequencies of Missing Values Due to Each Variable\n\n\\smallskip\n\n")
    if(sum(g > 0) < 4) {
      cat('\\begin{verbatim}\n')
      print(g)
      cat('\\end{verbatim}\n')
    } else {
      maxlen <- max(nchar(names(g)))
      est <- function(X, Y, x) approx(X, Y, xout=x, rule=2)$y
      z <- latexDotchart(g, names(g), auxdata=g, auxtitle='N',
                         w = 1 + est(c(2, 60), c(.5, 6), maxlen),
                         h = min(max(2.5*lg/20, 1), 8))
      cat(z, sep='\n')
    }
    cat("\n")
  }
  
  if(length(g <- object$na.detail.response)) {
    cat("\nStatistics on Response by Missing/Non-Missing Status of Predictors\n\n")
    print(unclass(g))
    cat("\n")           
  }
  if(file != '') sink()
  invisible()
}
                         
html.naprint.delete <- function(object, ...) {
  lg <- length(g <- object$nmiss)
  R <- character(0)
  if(lg) {
    if(sum(g > 0) < 4)
      R <- c('',
             'Frequencies of Missing Values Due to Each Variable<br>',
             '', '<pre>', capture.output(print(g)), '</pre>')
    else {
      maxlen <- max(nchar(names(g)))
      g  <- g[order(g)]
      fi <- tempfile(fileext='.png')
      png(fi, width=400, height=30 + length(g) * 24)
      opar <- par(mar=c(4,4,2,3), mgp=c(3-.75,1-.5,0))
      on.exit(par(opar))
      dotchart3(g, names(g), auxdata=g,
                xlab='Missing',
                main='Frequencies of NAs Due to Each Variable')
      dev.off()
      R <- c(tobase64image(fi), '<br>')
      #print(dotchartp(g, names(g), auxdata=g, auxtitle='N',
      #          main='Frequencies of Missing Values Due to Each Variable',
      #          showlegend = FALSE,
      #          sort   = 'descending',
      #          xlab   = 'Missing',
      #          width  = min(550, 300 + 20 * maxlen),
      #          height = plotlyParm$heightDotchart(lg)) ) 
    }
  }
  
  if(length(g <- object$na.detail.response)) {
    R <- c(R, '',
           'Statistics on Response by Missing/Non-Missing Status of Predictors<br>',
           '<pre>', capture.output(print(unclass(g))), '</pre>')
  }
  R
}
    
## Function to print model fit statistics
## Example:
#prStats(list('Observations', c('Log','Likelihood'),
##            c('Rank','Measures'),
##            c('Mean |difference|','Measures')),
##       list(list(N0=52, N1=48), list('max |deriv|'=1e-9,'-2 LL'=1332.23,
##            c(NA,2)),
#            list(tau=-.75, Dxy=-.64, C=.743, 2),
#            list(g=1.25, gr=11.3, 2)))
## Note that when there is an unnamed element of w, it is assumed to be
## the number of digits to the right of the decimal place (recycling of
## elements is done if fewer elements are in this vector), causing
## round(, # digits) and format(..., nsmall=# digits).  Use NA to use
## format without nsmall and without rounding (useful for integers and for
## scientific notation)

prStats <- function(labels, w, lang=c('plain', 'latex', 'html')) {
  lang  <- match.arg(lang)
  lorh  <- lang != 'plain'
  specs <- markupSpecs[[lang]]

  partial <- htmlSpecial('part')
  vbar    <- htmlTranslate('|')
  cca     <- htmlSpecial('combiningcircumflexaccent')
  beta    <- htmlGreek('beta')
  geq     <- htmlTranslate('>=')


  spaces <- function(n) if(n <= 0.5) '' else
   substring('                                                         ',
             1, floor(n))
  ## strsplit returns character(0) for ""
  ssplit <- function(x) {
    x <- strsplit(x, split='\n')
    for(i in 1 : length(x)) if(! length(x[[i]])) x[[i]] <- ''
    x
    }
  trans <- switch(lang,
                  latex = latexTranslate,
                  html  = htmlTranslate,
                  plain = function(x) x )
  ## Find maximum width used for each column
  p <- length(labels)
  width <- numeric(p)
for(i in 1:p) {
    labs <- ssplit(labels[i])[[1]]
    width[i] <- max(nchar(labs))
    u <- w[[i]]
    dig <- NA
    if(any(names(u)=='')) {
      dig <- unlist(u[names(u) == ''])
      u   <- u[names(u) != '']
    }
    lu  <- length(u)
    dig <- rep(dig, length=lu)
    fu  <- character(lu)
    for(j in 1 : length(u)) {
      uj <- u[[j]]
      nuj <- names(u)[j]
      dg <- dig[j]
      fu[j] <- if(nuj == 'Cluster on') specs$code(trans(uj))
               else
                 if(nuj == 'max |deriv|')
                   formatNP(signif(uj, 1), lang=lang)
               else
                 if(is.na(dg)) format(uj)
               else
                 if(dg < 0) formatNP(uj, -dg, pvalue=TRUE, lang=lang)
               else
                 formatNP(uj, dg, lang=lang)
    }
    names(fu) <- names(u)
    w[[i]]    <- fu
    for(j in 1 : length(u))
      width[i] <- max(width[i],
                      1 + nchar(nuj) + nchar(fu[j]))
  }
  if(lorh) {
    maxl <- max(sapply(w, length))
    z <- matrix('', nrow=maxl, ncol=p)
    fil <- if(lang == 'latex') '~\\hfill ' else htmlSpecial('emsp')

    chisq <- specs$chisq()
    
    trans <- rbind(
      'Dxy'        = c(latex = '$D_{xy}$',
                       html  = '<i>D</i><sub>xy</sub>'),
      'LR chi2'    = c(latex = paste0('LR ', chisq),
                       html  = paste0('LR ', chisq)),
      'Score chi2' = c(latex = paste0('Score ', chisq),
                       html  = paste0('Score ', chisq)),
      'Pr(> chi2)' = c(latex = 'Pr$(>\\chi^{2})$',
                       html  = paste0('Pr(', htmlTranslate('>'), chisq, ')')),
      'tau-a'      = c(latex = '$\\tau_{a}$',
                       html  = paste0(htmlGreek('tau'), '<sub>a</sub>')),
      'sigma gamma'= c(latex = '$\\sigma_{\\gamma}$',
                       html  = '&sigma;<sub>&gamma;</sub>'),
      'sigma w'    = c(latex = '$\\sigma_{w}$',
                       html  = '&sigma;<sub>w</sub>'),
      'gamma'      = c(latex = '$\\gamma$',
                       html  = htmlGreek('gamma')),
      'R2'         = c(latex = '$R^{2}$',
                       html  = '<i>R</i><sup>2</sup>'),
      'R2 adj'     = c(latex = '$R^{2}_{\\textrm{adj}}$',
                       html  = paste0('<i>R</i>', specs$subsup('adj', '2'))),
      'C'          = c(latex = '$C$',
                       html  = '<i>C</i>'),
      'g'          = c(latex = '$g$',
                       html  = '<i>g</i>'),
      'gp'         = c(latex = '$g_{p}$',
                       html  = '<i>g</i><sub>p</sub>'),
      'gr'         = c(latex = '$g_{r}$',
                       html  = '<i>g</i><sub>r</sub>'),
      'max |deriv|'   = c(latex = '$\\max|\\frac{\\partial\\log L}{\\partial \\beta}|$',
                          html  = paste0('max ', vbar, partial,
                                         'log <i>L</i>/', partial,
                                         beta, vbar)),
      'mean |Y-Yhat|' = c(latex = 'mean $|Y-\\hat{Y}|$',
                          html  = paste0('mean ', vbar, '<i>Y - Y</i>',
                                         cca, vbar)),
      'Distinct Y'   = c(latex = 'Distinct $Y$',
                       html  = 'Distinct <i>Y</i>'),
      'Median Y'   = c(latex = '$Y_{0.5}$',
                       html  = '<i>Y</i><sub>0.5</sub>'),
      '|Pr(Y>=median)-0.5|'  =
        c(latex = '$|\\overline{\\mathrm{Pr}(Y\\geq Y_{0.5})-\\frac{1}{2}}|$',
          html  = paste0('<span style="text-decoration: overline">', vbar,
                         'Pr(<i>Y</i> ', geq, ' median)-',
                       htmlSpecial('half'), vbar,
                         '</span>'))

    )
    
    for(i in 1 : p) {
      k <- names(w[[i]])
      for(j in 1 : length(k)) {
        u <- k[j]
        k[j] <- if(u %in% rownames(trans)) trans[u, lang]
        else if(grepl('R2\\(', u))   # handle R2(p,n) from R2Measures
          switch(lang,
                 plain = u,
                 latex = sub('R2\\((.*)\\)', '$R^{2}_{\\1}$', u),
                 html  = sub('R2\\((.*)\\)',
                             paste0('<i>R</i>',
                                    specs$subsup('\\1', '2')),u))
        else
          switch(lang,
                 plain = u,
                 latex = latexTranslate(u, greek=TRUE),
                 html  = htmlTranslate (u, greek=TRUE) )
      }
      z[1 : length(k), i] <- paste0(k, fil, w[[i]])
    }
    
    al <- paste0('|', paste(rep('c|', p), collapse=''))
    if(lang == 'latex')
      w <- latexTabular(z, headings=labels, align=al, halign=al,
                        translate=FALSE, hline=2, center=TRUE)
    else {
      labels <- gsub('\n', '<br>', labels)
      w <- htmlTable::htmlTable(z,
                                header=labels,
                                css.cell = 'min-width: 9em;',
                                align=al, align.header=al,
                                escape.html=FALSE)
      w <- htmltools::HTML(paste0(w, '\n'))
    }
    return(w)
  }
  z <- labs <- character(0)
  for(i in 1:p) {
    wid <- width[i]
    lab <- ssplit(labels[i])[[1]]
    for(j in 1:length(lab))
      lab[j] <- paste0(spaces((wid - nchar(lab[j])) / 2), lab[j])
    labs <- c(labs, paste(lab, collapse='\n'))
    u   <- w[[i]]
    a <- ''
    for(i in 1:length(u))
      a <- paste0(a, names(u)[i],
                 spaces(wid - nchar(u[i]) - nchar(names(u[i]))),
                 u[i],
                 if(i < length(u)) '\n')
    z <- c(z, a)
  }
  res <- rbind(labs, z)
  rownames(res) <- NULL
  capture.output(print.char.matrix(res, vsep='', hsep='    ', csep='',
                                   top.border=FALSE, left.border=FALSE))
}

## reListclean is used in conjunction with pstats
## Example:
## x <- c(a=1, b=2)
## c(A=x[1], B=x[2])
## reListclean(A=x[1], B=x[2])
## reListclean(A=x['a'], B=x['b'], C=x['c'])
## reListclean(A=x[1], B=c(x1=x[1], x2=x[2]))
## The last form causes B to be expanded into to two list elements
## named x1 and x2 and the name B is ignored
## reListclean(A=x[1], namesFrom=z) where z is only a 1 element vector will
## still override namesFrom (literally) with names(z) if 
## Update 2023-04-23: new argument dec which is appended to resulting
## vector and has elements removed if elements are removed from main
## information due to NA or NULL

#reListclean <- function(..., na.rm=TRUE) {
#  d <- list(...)
#  d <- d[sapply(d, function(x) ! is.null(x))]
#  x <- unlist(d)
#  names(x) <- names(d)
#  if(na.rm) x[! is.na(x)] else x
#}
reListclean <- function(..., dec=NULL, na.rm=TRUE) {
  d <- list(...)
  if(length(dec)) dec <- rep(dec, length=length(d))
  g <- if(na.rm) function(x) length(x) > 0 && ! all(is.na(x))
       else
         function(x) length(x) > 0
  keep <- which(sapply(d, g))
  w    <- d[keep]
  if(length(dec)) dec <- dec[keep]
  
  r <- list()
  nam <- names(w)
  i   <- 0
  nm  <- character(0)
  for(u in w) {
    i <- i + 1
    for(j in 1 : length(u)) {
      if(is.na(u[j])) next
      r <- c(r, u[j])
      nm <- c(nm, if(nam[i] != 'namesFrom' & length(u) == 1) nam[i] else {
            if(! length(names(u))) stop('vector element does not have names')
            names(u)[j] })
    }
  }
  names(r) <- nm
  c(r, dec)
}



formatNP <- function(x, digits=NULL, pvalue=FALSE,
                     lang=c('plain', 'latex', 'html')) {
  lang <- match.arg(lang)
  if(! is.numeric(x)) return(x)
  digits <- as.numeric(digits)  # Needed but can't figure out why
    x <- as.numeric(x)
  f <- if(length(digits) && ! is.na(digits))
         format(round(x, digits), nsmall=digits, scientific=1) else
         format(x, scientific=1)
  sci <- grep('e', f)
  if(length(sci)) {
    if(lang == 'latex') f[sci] <- paste0('$', latexSN(f[sci]), '$')
    else
      if(lang == 'html') f[sci] <- htmlSN(f[sci])
  }
  f <- ifelse(is.na(x), '', f)

  if(! pvalue) return(f)
  
  if(! length(digits)) stop('must specify digits if pvalue=TRUE')
  s <- ! is.na(x) & x < 10 ^ (-digits)
  if(any(s)) {
    w <- paste0('0.', paste0(rep('0', digits - 1), collapse=''), '1')
    f[s] <- switch(lang,
                   latex = paste0('\\textless ', w),
                   html  = paste0(htmlTranslate('<'), w),
                   plain = paste0('<', w))
  }
  f
}

logLik.ols <- function(object, ...) {
  ll <- getS3method('logLik', 'lm')(object)
  attr(ll, 'df') <- object$stats['d.f.'] + 2
  ll
}

logLik.rms <- function(object, ...)
  {
    dof <- unname(object$stats['d.f.'] + num.intercepts(object))
    if(inherits(object, 'psm')) dof <- dof + 1  # for sigma
    nobs <- nobs(object)
    w <- object$loglik
    if(length(w)) return(structure(w[length(w)], nobs=nobs, df=dof,
                                   class='logLik'))
    w <- object$deviance
    structure(-0.5*w[length(w)], nobs=nobs, df=dof, class='logLik')
  }

logLik.Gls <- function(object, ...) getS3method('logLik', 'gls')(object, ...)
    
AIC.rms <- function(object, ..., k=2, type=c('loglik','chisq'))
  {
    type <- match.arg(type)
    if(type == 'loglik') return(AIC(logLik(object), k=k))
    stats <- object$stats
    dof <- stats['d.f.']
    unname(stats['Model L.R.'] - k * dof)
  }

nobs.rms <- function(object, ...)
  {
    st <- object$stats
    if(inherits(object,'Gls')) length(object$residuals)
    else if(any(names(st) == 'Obs')) unname(st['Obs'])
    else unname(st['n'])
  }

setPb <- function(n, type=c('Monte Carlo Simulation','Bootstrap',
                       'Cross-Validation'),
                  label, usetk=TRUE, onlytk=FALSE, every=1) {
  type <- match.arg(type)
  if(!missing(label)) type <- label
  pbo <- .Options$showprogress
  if(!length(pbo)) pbo <- 'console'
  else if(is.logical(pbo)) {
    pbo <- if(pbo) 'tk' else 'none'
  }
  if(missing(every)) {
    evo <- .Options$showevery
    if(length(evo)) every <- evo
  }
  if(pbo == 'none') return(function(i, ...){invisible()})
  if(pbo == 'tk' && usetk && requireNamespace('tcltk', quietly=TRUE)) {
    pb <- tcltk::tkProgressBar(type, 'Iteration: ', 0, n)
    upb1 <- function(i, n, every, pb) {
      if(i %% every == 0)
        tcltk::setTkProgressBar(pb, i, label=sprintf('Iteration: %d', i))
      if(i == n) close(pb)
    }
    formals(upb1) <- list(i=0, n=n, every=every, pb=pb)
    return(upb1)
  }
  if(onlytk) return(function(...) {invisible()})
  upb2 <- function(i, n, every) {
    if(i %% every == 0)
      cat('Iteration: ', i, ' of ', n, '\r', sep='')
    if(i == n) cat('\n')
  }
  formals(upb2) <- list(i=0, n=n, every=every)
  upb2
}

## Function to remove one or more terms from a model formula, using
## strictly character manipulation.  This handles problems such as
## [.terms removing offset() if you subset on anything
## For each character string in which, terms like string(...) are removed.
## drop.terms will not remove offset()

if(FALSE) removeFormulaTerms <- function(form, which=NULL, delete.response=FALSE) {
  if('offset' %in% which) {
    form <- formula(terms(form)[TRUE])
    which <- setdiff(which, 'offset')
  }
  ## [.terms ignores offset variables.  Above logic handles nested () unlike
  ## what is below
  form <- paste(deparse(form), collapse='')  # no string splitting
  if(delete.response) form <- gsub('.*~', '~', form)
  for(w in which) {
    pattern <- sprintf('\\+?[ ]*?%s\\(.*?\\)[ ]*?\\+{0,1}', w)  ## assume additive form
    form <- gsub(pattern, '', form)
  }
  as.formula(form)
}

## Version of removeFormulaTerms that uses the terms() and drop.terms()s Functions

removeFormulaTerms <- function(form, which=NULL, delete.response=FALSE) {
  # drop.terms will not remove offsets.  Trick it by renaming offset() terms .off.
  if('offset' %in% which) {
    form <- format(form)
    which[which == 'offset'] <- '.off.'
    form <- as.formula(gsub('offset(', '.off.(', form, fixed=TRUE))
  }

  te <- terms(form, specials=which)
  s  <- unlist(attr(te, 'specials'))  # LHS present -> 1 added to s
  ypresent <- attr(te, 'response')
  # drop.terms counts only RHS terms
  te <- drop.terms(te, s - ypresent, keep.response= ! delete.response)
  formula(te)   # don't allow other attributes to be there
}

Try the rms package in your browser

Any scripts or data that you put into this service are public.

rms documentation built on Sept. 11, 2024, 7:51 p.m.