Nothing
## |
## | *Simulation of multi-arm design with combination test and conditional error approach*
## |
## | This file is part of the R package rpact:
## | Confirmatory Adaptive Clinical Trial Design and Analysis
## |
## | Author: Gernot Wassmer, PhD, and Friedrich Pahlke, PhD
## | Licensed under "GNU Lesser General Public License" version 3
## | License text can be found here: https://www.r-project.org/Licenses/LGPL-3
## |
## | RPACT company website: https://www.rpact.com
## | rpact package website: https://www.rpact.org
## |
## | Contact us for information about our services: info@rpact.com
## |
## | File version: $Revision: 8361 $
## | Last changed: $Date: 2024-11-04 16:27:39 +0100 (Mo, 04 Nov 2024) $
## | Last changed by: $Author: pahlke $
## |
#' @include f_core_utilities.R
NULL
#'
#' @title
#' Set Seed
#'
#' @description
#' Sets the seed, generates it if \code{is.na(seed) == TRUE} and returns it.
#'
#' @param seed the seed to set.
#'
#' @details
#' Internal function.
#'
#' @return the (generated) seed.
#'
#' @examples
#' \dontrun{
#' .setSeed(12345)
#' mySeed <- .setSeed()
#' mySeed
#' }
#'
#' @keywords internal
#'
#' @noRd
#'
.setSeed <- function(seed = NA_real_) {
if (!is.null(seed) && !is.na(seed)) {
if (is.na(as.integer(seed))) {
stop(C_EXCEPTION_TYPE_ILLEGAL_ARGUMENT, "'seed' must be a valid integer")
}
set.seed(seed = seed, kind = "Mersenne-Twister", normal.kind = "Inversion")
return(seed)
}
if (exists(".Random.seed") && length(.Random.seed) > 0) {
seed <- .Random.seed[length(.Random.seed)]
} else {
seed <- round(stats::runif(1) * 1e8)
}
.logDebug("Set seed to %s", seed)
tryCatch(
{
set.seed(seed, kind = "Mersenne-Twister", normal.kind = "Inversion")
},
error = function(e) {
.logError("Failed to set seed to '%s' (%s): %s", seed, .getClassName(seed), e)
seed <<- NA_real_
traceback()
}
)
invisible(seed)
}
.getGMaxFromSubGroups <- function(subGroups) {
.assertIsCharacter(subGroups, "subGroups")
subGroups[subGroups == "S"] <- "S1"
subGroups <- trimws(gsub("\\D", "", subGroups))
subGroups <- subGroups[subGroups != ""]
if (length(subGroups) == 0) {
return(1)
}
gMax <- max(as.integer(unlist(strsplit(subGroups, "", fixed = TRUE)))) + 1
return(gMax)
}
.getSimulationParametersFromRawData <- function(data, ..., variantName, maxNumberOfIterations = NA_integer_) {
if (is.null(data) || length(data) == 0) {
stop(C_EXCEPTION_TYPE_ILLEGAL_ARGUMENT, "'data' must be a valid data.frame or a simulation result object")
}
if (inherits(data, "SimulationResults")) {
data <- data[[".data"]]
}
if (!is.data.frame(data)) {
stop(C_EXCEPTION_TYPE_ILLEGAL_ARGUMENT, "'data' (", .getClassName(data), ") must be a data.frame or a simulation result object")
}
if (is.na(maxNumberOfIterations)) {
maxNumberOfIterations <- max(data$iterationNumber)
}
stageNumbers <- sort(unique(na.omit(data$stageNumber)))
kMax <- max(stageNumbers)
variantLevels <- sort(unique(na.omit(data[[variantName]])))
numberOfVariants <- length(variantLevels)
sampleSizes <- matrix(0, nrow = kMax, ncol = numberOfVariants)
rejectPerStage <- matrix(0, nrow = kMax, ncol = numberOfVariants)
futilityPerStage <- matrix(0, nrow = kMax - 1, ncol = numberOfVariants)
expectedNumberOfSubjects <- rep(0, numberOfVariants)
conditionalPowerAchieved <- matrix(NA_real_, nrow = kMax, ncol = numberOfVariants)
index <- 1
for (variantValue in variantLevels) {
subData <- data[data[[variantName]] == variantValue, ]
iterations <- table(subData$stageNumber)
for (k in sort(unique(na.omit(subData$stageNumber)))) {
subData2 <- subData[subData$stageNumber == k, ]
sampleSizes[k, index] <- sum(subData2$numberOfSubjects) / iterations[k]
rejectPerStage[k, index] <- sum(subData2$rejectPerStage) / maxNumberOfIterations
if (k < kMax) {
futilityPerStage[k, index] <- sum(na.omit(subData2$futilityPerStage)) / maxNumberOfIterations
}
expectedNumberOfSubjects[index] <- expectedNumberOfSubjects[index] +
sum(subData2$numberOfSubjects) / maxNumberOfIterations
if (k > 1) {
conditionalPowerAchieved[k, index] <-
sum(subData$conditionalPowerAchieved[subData$stageNumber == k]) / iterations[k]
}
}
index <- index + 1
}
overallReject <- colSums(rejectPerStage)
futilityStop <- colSums(futilityPerStage)
iterations <- table(data$stageNumber, data[[variantName]])
if (kMax > 1) {
if (numberOfVariants == 1) {
earlyStop <- sum(futilityPerStage) + sum(rejectPerStage[1:(kMax - 1)])
} else {
if (kMax > 2) {
rejectPerStageColSum <- colSums(rejectPerStage[1:(kMax - 1), ])
} else {
rejectPerStageColSum <- rejectPerStage[1, ]
}
earlyStop <- colSums(futilityPerStage) + rejectPerStageColSum
}
} else {
earlyStop <- rep(0, numberOfVariants)
}
sampleSizes[is.na(sampleSizes)] <- 0
return(list(
sampleSizes = sampleSizes,
rejectPerStage = rejectPerStage,
overallReject = overallReject,
futilityPerStage = futilityPerStage,
futilityStop = futilityStop,
iterations = iterations,
earlyStop = earlyStop,
expectedNumberOfSubjects = expectedNumberOfSubjects,
conditionalPowerAchieved = conditionalPowerAchieved
))
}
.assertArgumentFitsWithSubGroups <- function(arg, argName, subGroups) {
if (is.null(arg) || length(arg) == 0 || all(is.na(arg))) {
stop(C_EXCEPTION_TYPE_ILLEGAL_ARGUMENT, "'effectList' must contain ", sQuote(argName))
}
argName <- paste0("effectList$", argName)
len <- ifelse(is.matrix(arg), ncol(arg), length(arg))
if (len != length(subGroups)) {
argName <- sQuote(argName)
if (!is.matrix(arg)) {
argName <- paste0(argName, " (", .arrayToString(arg), ")")
}
stop(
C_EXCEPTION_TYPE_ILLEGAL_ARGUMENT, argName, " must have ", length(subGroups),
" columns given by the number of sub-groups"
)
}
}
C_EFFECT_LIST_NAMES_EXPECTED_MEANS <- c("subGroups", "prevalences", "effects", "stDevs")
C_EFFECT_LIST_NAMES_EXPECTED_RATES <- c("subGroups", "prevalences", "piControls", "piTreatments")
C_EFFECT_LIST_NAMES_EXPECTED_SURVIVAL <- c("subGroups", "prevalences", "piControls", "hazardRatios")
.getEffectData <- function(effectList, ...,
endpoint = NA_character_,
gMax = NA_integer_,
nullAllowed = TRUE,
parameterNameWarningsEnabled = TRUE) {
if (nullAllowed && is.null(effectList)) {
return(NULL)
}
.assertIsSingleInteger(gMax, "gMax", naAllowed = TRUE, validateType = FALSE)
if (is.null(effectList) || length(effectList) == 0 || !is.list(effectList)) {
stop(C_EXCEPTION_TYPE_ILLEGAL_ARGUMENT, sQuote("effectList"), " must be a non-empty list")
}
effectListNames <- names(effectList)
if (is.null(effectListNames) || any(nchar(trimws(effectListNames)) == 0)) {
stop(
C_EXCEPTION_TYPE_ILLEGAL_ARGUMENT, sQuote("effectList"), " must be named. Current names are ",
.arrayToString(effectListNames, encapsulate = TRUE)
)
}
for (singularName in c(
"subGroup", "effect", "piTreatment", "piControl",
"hazardRatio", "prevalence", "stDev"
)) {
names(effectList)[names(effectList) == singularName] <- paste0(singularName, "s")
}
effectListNames <- names(effectList)
if (!("subGroups" %in% effectListNames)) {
stop(C_EXCEPTION_TYPE_ILLEGAL_ARGUMENT, sQuote("effectList"), " must contain ", sQuote("subGroups"))
}
subGroups <- effectList[["subGroups"]]
if (is.null(subGroups) || length(subGroups) == 0 || (!is.character(subGroups) && !is.factor(subGroups))) {
stop(
C_EXCEPTION_TYPE_ILLEGAL_ARGUMENT, sQuote("effectList$subGroups"),
" must be a non-empty character vector or factor"
)
}
if (is.factor(subGroups)) {
subGroups <- as.character(subGroups)
}
expectedSubGroups <- "F"
if (length(subGroups) > 1) {
if (is.na(gMax)) {
if (length(subGroups) > 2) {
gMax <- max(as.integer(strsplit(gsub("\\D", "", paste0(subGroups, collapse = "")), "",
fixed = TRUE
)[[1]]), na.rm = TRUE) + 1
} else {
gMax <- length(subGroups)
}
}
if ("F" %in% subGroups) {
stop(
C_EXCEPTION_TYPE_ILLEGAL_ARGUMENT, "definition of full population 'F' ",
"together with sub-groups", ifelse(length(subGroups) == 2, "", "s"), " ",
.arrayToString(subGroups[subGroups != "F"], encapsulate = TRUE, mode = "and"),
" makes no sense and is not allowed (use remaining population 'R' instead of 'F')"
)
}
expectedSubGroups <- .createSubsetsByGMax(gMax, stratifiedInput = TRUE, all = FALSE)
if (gMax < 3) {
expectedSubGroups <- gsub("\\d", "", expectedSubGroups)
}
}
missingSubGroups <- expectedSubGroups[!(expectedSubGroups %in% subGroups)]
if (length(missingSubGroups) > 0) {
stop(
C_EXCEPTION_TYPE_ILLEGAL_ARGUMENT, sQuote("effectList$subGroups"),
" must contain ", .arrayToString(dQuote(missingSubGroups))
)
}
unknownSubGroups <- subGroups[!(subGroups %in% expectedSubGroups)]
if (length(unknownSubGroups) > 0) {
stop(
C_EXCEPTION_TYPE_ILLEGAL_ARGUMENT, sQuote("effectList$subGroups"),
" must not contain ", .arrayToString(dQuote(unknownSubGroups)),
" (valid sub-group names: ", .arrayToString(dQuote(expectedSubGroups)), ")"
)
}
matrixName <- NA_character_
matrixNames <- c("effects", "piTreatments", "hazardRatios")
if (!is.na(endpoint)) {
if (endpoint == "means") {
matrixNames <- "effects"
} else if (endpoint == "rates") {
matrixNames <- "piTreatments"
} else if (endpoint == "survival") {
matrixNames <- "hazardRatios"
}
}
for (m in matrixNames) {
if (m %in% effectListNames) {
matrixName <- m
break
}
}
if (is.na(matrixName)) {
stop(
C_EXCEPTION_TYPE_ILLEGAL_ARGUMENT, sQuote("effectList"), " must contain ",
.arrayToString(matrixNames, mode = "or", encapsulate = TRUE)
)
}
matrixValues <- effectList[[matrixName]]
if (is.vector(matrixValues)) {
matrixValues <- matrix(matrixValues, nrow = 1)
}
if (is.matrix(matrixValues)) {
.assertIsValidMatrix(matrixValues, paste0("effectList$", matrixName), naAllowed = TRUE)
}
if (!is.matrix(matrixValues) && !is.data.frame(matrixValues)) {
stop(
C_EXCEPTION_TYPE_ILLEGAL_ARGUMENT, sQuote(paste0("effectList$", matrixName)),
" must be a matrix or data.frame"
)
}
if (!is.data.frame(matrixValues)) {
matrixValues <- as.data.frame(matrixValues)
}
if (nrow(matrixValues) == 0) {
stop(
C_EXCEPTION_TYPE_ILLEGAL_ARGUMENT, sQuote(paste0("effectList$", matrixName)),
" must have one or more rows ",
"reflecting the different situations to consider"
)
}
.assertArgumentFitsWithSubGroups(matrixValues, matrixName, subGroups)
colNames <- paste0(matrixName, 1:ncol(matrixValues))
colnames(matrixValues) <- colNames
matrixValues$situation <- 1:nrow(matrixValues)
longData <- stats::reshape(data = matrixValues, direction = "long", varying = colNames, idvar = "situation", sep = "")
timeColumnIndex <- which(colnames(longData) == "time")
colnames(longData)[timeColumnIndex] <- "subGroupNumber"
longData$subGroups <- rep(NA_character_, nrow(longData))
indices <- sort(unique(longData$subGroupNumber))
for (i in indices) {
longData$subGroups[longData$subGroupNumber == i] <- subGroups[i]
}
longData$prevalences <- rep(NA_real_, nrow(longData))
prevalences <- effectList[["prevalences"]]
if (is.null(prevalences)) {
stop(C_EXCEPTION_TYPE_MISSING_ARGUMENT, sQuote("effectList$prevalences"), " must be specified")
}
.assertIsNumericVector(prevalences, "effectList$prevalences")
.assertArgumentFitsWithSubGroups(prevalences, "prevalences", subGroups)
if (abs(sum(prevalences) - 1) > 1e-04) {
stop(C_EXCEPTION_TYPE_ILLEGAL_ARGUMENT, sQuote("effectList$prevalences"), " must sum to 1")
}
for (i in indices) {
longData$prevalences[longData$subGroupNumber == i] <- prevalences[i]
}
# means only
if (matrixName == "effects") {
longData$stDevs <- rep(NA_real_, nrow(longData))
stDevs <- effectList[["stDevs"]]
if (is.null(stDevs)) {
stop(C_EXCEPTION_TYPE_MISSING_ARGUMENT, sQuote("effectList$stDevs"), " must be specified")
}
.assertIsNumericVector(stDevs, "effectList$stDevs")
if (!is.null(stDevs) && length(stDevs) == 1) {
stDevs <- rep(stDevs, length(prevalences))
}
.assertArgumentFitsWithSubGroups(stDevs, "stDevs", subGroups)
for (i in indices) {
longData$stDevs[longData$subGroupNumber == i] <- stDevs[i]
}
}
# rates and survival only
else if (matrixName == "piTreatments" ||
matrixName == "hazardRatios" && "piControls" %in% effectListNames) {
longData$piControls <- rep(NA_real_, nrow(longData))
piControls <- effectList[["piControls"]]
if (is.null(piControls)) {
stop(C_EXCEPTION_TYPE_MISSING_ARGUMENT, sQuote("effectList$piControls"), " must be specified")
}
.assertIsNumericVector(piControls, "effectList$piControls")
.assertArgumentFitsWithSubGroups(piControls, "piControls", subGroups)
for (i in indices) {
longData$piControls[longData$subGroupNumber == i] <- piControls[i]
}
}
rownames(longData) <- NULL
# order by subGroup
longData$subGroupNumber <- as.integer(gsub("\\D", "", gsub("^S$", "S1", longData$subGroups)))
longData$subGroupNumber[is.na(longData$subGroupNumber)] <- 99999
longData <- longData[order(longData$subGroupNumber, longData$situation), ]
longData <- .moveColumn(longData, matrixName, colnames(longData)[length(colnames(longData))])
for (singularName in c(
"subGroup", "effect", "piTreatment", "piControl",
"hazardRatio", "prevalence", "stDev"
)) {
colnames(longData)[colnames(longData) == paste0(singularName, "s")] <- singularName
}
longData <- longData[, colnames(longData) != "subGroupNumber"]
if (parameterNameWarningsEnabled && !is.na(endpoint)) {
if (endpoint == "means") {
ignore <- effectListNames[!(effectListNames %in% C_EFFECT_LIST_NAMES_EXPECTED_MEANS)]
} else if (endpoint == "rates") {
ignore <- effectListNames[!(effectListNames %in% C_EFFECT_LIST_NAMES_EXPECTED_RATES)]
} else if (endpoint == "survival") {
ignore <- effectListNames[!(effectListNames %in% C_EFFECT_LIST_NAMES_EXPECTED_SURVIVAL)]
}
if (length(ignore) > 0) {
warning("The parameter", ifelse(length(ignore) == 1, "", "s"), " ", .arrayToString(ignore, encapsulate = TRUE),
" will be ignored",
call. = FALSE
)
}
}
return(longData)
}
.getSimulationEnrichmentEffectMatrixName <- function(obj) {
if (!grepl("SimulationResultsEnrichment", .getClassName(obj))) {
stop(
C_EXCEPTION_TYPE_ILLEGAL_ARGUMENT, sQuote("obj"),
" must be a SimulationResultsEnrichment object (is ", .getClassName(obj), ")"
)
}
if (grepl("Means", .getClassName(obj))) {
return("effects")
}
if (grepl("Rates", .getClassName(obj))) {
return("piTreatments")
}
if (grepl("Survival", .getClassName(obj))) {
return("hazardRatios")
}
stop(C_EXCEPTION_TYPE_RUNTIME_ISSUE, "class ", .getClassName(obj), " not supported")
}
.getSimulationEnrichmentEffectData <- function(simulationResults, validatePlotCapability = TRUE) {
effectMatrixName <- .getSimulationEnrichmentEffectMatrixName(simulationResults)
effectData <- simulationResults$effectList[[effectMatrixName]]
discreteXAxis <- FALSE
if (ncol(effectData) == 1) {
xValues <- effectData[, 1]
} else {
xValues <- 1:nrow(effectData)
discreteXAxis <- TRUE
}
valid <- TRUE
if (length(xValues) <= 1) {
if (validatePlotCapability) {
stop(
C_EXCEPTION_TYPE_ILLEGAL_ARGUMENT, "2 ore more situations must be specifed in ",
sQuote(paste0("effectList$", effectMatrixName))
)
}
valid <- FALSE
}
return(list(
effectMatrixName = effectMatrixName,
effectData = effectData,
xValues = xValues,
discreteXAxis = discreteXAxis,
valid = valid
))
}
.getEffectList <- function(effectData, ...,
parameterName = "effectData",
endpoint = NA_character_,
parameterNameWarningsEnabled = TRUE) {
if (is.null(effectData) || length(effectData) == 0 || !is.data.frame(effectData)) {
stop(C_EXCEPTION_TYPE_ILLEGAL_ARGUMENT, sQuote(parameterName), " must be a non-empty data.frame")
}
effectList <- list(subGroups = character(), prevalences = numeric(0))
matrixName <- NA_character_
matrixNames <- c("effect", "piTreatment", "hazardRatio")
names(matrixNames) <- c("means", "rates", "survival")
expectedMatrixName <- ifelse(is.na(endpoint), NA_character_, matrixNames[[endpoint]])
effectDataNames <- colnames(effectData)
for (m in matrixNames) {
if (m %in% effectDataNames && (is.na(endpoint) || identical(m, expectedMatrixName))) {
matrixName <- m
break
}
}
if (is.na(matrixName)) {
stop(
C_EXCEPTION_TYPE_ILLEGAL_ARGUMENT, sQuote(parameterName), " must contain ",
ifelse(!is.na(expectedMatrixName),
sQuote(expectedMatrixName),
.arrayToString(matrixNames, mode = "or", encapsulate = TRUE)
)
)
}
matrixNameNew <- paste0(matrixName, "s")
effectList[[matrixNameNew]] <- NULL
if (matrixName == "effect") {
effectList$stDevs <- numeric(0)
} else if (matrixName %in% c("piTreatment", "hazardRatio")) {
effectList$piControls <- numeric(0)
}
for (subGroup in unique(effectData$subGroup)) {
effectList$subGroups <- c(effectList$subGroups, subGroup)
subData <- effectData[effectData$subGroup == subGroup, ]
effectList$prevalences <- c(effectList$prevalences, subData$prevalence[1])
if (matrixName == "effect") {
if (!("stDev" %in% effectDataNames)) {
stop(C_EXCEPTION_TYPE_ILLEGAL_ARGUMENT, sQuote(parameterName), " must contain ", sQuote("stDev"))
}
effectList$stDevs <- c(effectList$stDevs, subData$stDev[1])
} else if (matrixName == "piTreatment" || (matrixName == "hazardRatio" && "piControl" %in% effectDataNames)) {
if (!("piControl" %in% effectDataNames)) {
stop(C_EXCEPTION_TYPE_ILLEGAL_ARGUMENT, sQuote(parameterName), " must contain ", sQuote("piControl"))
}
effectList$piControls <- c(effectList$piControls, subData$piControl[1])
}
if (is.null(effectList[[matrixNameNew]])) {
effectList[[matrixNameNew]] <- subData[[matrixName]]
} else {
effectList[[matrixNameNew]] <- cbind(effectList[[matrixNameNew]], subData[[matrixName]])
}
}
if (!is.matrix(effectList[[matrixNameNew]])) {
effectList[[matrixNameNew]] <- matrix(effectList[[matrixNameNew]], ncol = 1)
}
if (parameterNameWarningsEnabled && !is.na(endpoint)) {
if (endpoint == "means") {
ignore <- effectDataNames[!(effectDataNames %in% gsub("s$", "", C_EFFECT_LIST_NAMES_EXPECTED_MEANS))]
} else if (endpoint == "rates") {
ignore <- effectDataNames[!(effectDataNames %in% gsub("s$", "", C_EFFECT_LIST_NAMES_EXPECTED_RATES))]
} else if (endpoint == "survival") {
ignore <- effectDataNames[!(effectDataNames %in% gsub("s$", "", C_EFFECT_LIST_NAMES_EXPECTED_SURVIVAL))]
}
if (length(ignore) > 0) {
warning("The parameter", ifelse(length(ignore) == 1, "", "s"), " ", .arrayToString(ignore, encapsulate = TRUE),
" will be ignored",
call. = FALSE
)
}
}
if (!is.null(effectList[["prevalences"]])) {
.assertIsInClosedInterval(effectList$prevalences, "effectList$prevalences",
lower = 0, upper = 1, call. = FALSE
)
}
if (!is.null(effectList[["effects"]])) {
.assertIsNumericVector(effectList$effects, "effectList$effects", call. = FALSE)
}
for (piParam in c("piControls", "piTreatments")) {
if (!is.null(effectList[[piParam]])) {
if (piParam == matrixNameNew && is.matrix(effectList[[piParam]])) {
for (i in 1:nrow(effectList[[piParam]])) {
.assertIsInOpenInterval(effectList[[piParam]][i, ], paste0("effectList$", piParam),
lower = 0, upper = 1, call. = FALSE
)
}
} else {
.assertIsInOpenInterval(effectList[[piParam]], paste0("effectList$", piParam),
lower = 0, upper = 1, call. = FALSE
)
}
}
}
for (ratioParam in c("hazardRatios", "stDevs")) {
if (!is.null(effectList[[ratioParam]])) {
.assertIsInOpenInterval(effectList[[ratioParam]], paste0("effectList$", ratioParam),
lower = 0, upper = NULL, call. = FALSE
)
}
}
return(effectList)
}
.getValidatedEffectList <- function(effectList, ..., endpoint, gMax = NA_integer_, nullAllowed = TRUE) {
if (is.null(endpoint) || !(endpoint %in% c("means", "rates", "survival"))) {
stop(C_EXCEPTION_TYPE_RUNTIME_ISSUE, "'endpoint' (", endpoint, ") must be one of 'means', 'rates', or 'survival'")
}
if (is.null(effectList) || length(effectList) == 0 || (!is.list(effectList) && !is.data.frame(effectList))) {
stop(C_EXCEPTION_TYPE_ILLEGAL_ARGUMENT, "'effectList' must be a valid list or data.frame")
}
if (is.data.frame(effectList)) {
return(.getEffectList(effectList, parameterName = "effectList", endpoint = endpoint))
}
effectData <- .getEffectData(effectList, endpoint = endpoint, gMax = gMax, nullAllowed = nullAllowed)
return(.getEffectList(effectData))
}
.getVariedParameterSimulationMultiArm <- function(designPlan) {
if (!grepl("SimulationResultsMultiArm", .getClassName(designPlan))) {
stop(
C_EXCEPTION_TYPE_ILLEGAL_ARGUMENT, "'designPlan' (",
.getClassName(designPlan), ") must be of class 'SimulationResultsMultiArm'"
)
}
if (grepl("Means", .getClassName(designPlan))) {
return("muMaxVector")
} else if (grepl("Rates", .getClassName(designPlan))) {
return("piMaxVector")
} else if (grepl("Survival", .getClassName(designPlan))) {
return("omegaMaxVector")
}
stop(
C_EXCEPTION_TYPE_ILLEGAL_ARGUMENT, "'designPlan' (",
.getClassName(designPlan), ") must be of class 'SimulationResultsMultiArm'"
)
}
#'
#' @title
#' Get Simulation Data
#'
#' @description
#' Returns the aggregated simulation data.
#'
#' @param x A \code{\link{SimulationResults}} object created by \code{\link[=getSimulationMeans]{getSimulationMeans()}},\cr
#' \code{\link[=getSimulationRates]{getSimulationRates()}}, \code{\link[=getSimulationSurvival]{getSimulationSurvival()}}, \code{\link[=getSimulationMultiArmMeans]{getSimulationMultiArmMeans()}},\cr
#' \code{\link[=getSimulationMultiArmRates]{getSimulationMultiArmRates()}}, or \code{\link[=getSimulationMultiArmSurvival]{getSimulationMultiArmSurvival()}}.
#'
#' @details
#' This function can be used to get the aggregated simulated data from an simulation results
#' object, for example, obtained by \code{\link[=getSimulationSurvival]{getSimulationSurvival()}}.
#' In this case, the data frame contains the following columns:
#' \enumerate{
#' \item \code{iterationNumber}: The number of the simulation iteration.
#' \item \code{stageNumber}: The stage.
#' \item \code{pi1}: The assumed or derived event rate in the treatment group.
#' \item \code{pi2}: The assumed or derived event rate in the control group.
#' \item \code{hazardRatio}: The hazard ratio under consideration (if available).
#' \item \code{analysisTime}: The analysis time.
#' \item \code{numberOfSubjects}: The number of subjects under consideration when the
#' (interim) analysis takes place.
#' \item \code{eventsPerStage1}: The observed number of events per stage
#' in treatment group 1.
#' \item \code{eventsPerStage2}: The observed number of events per stage
#' in treatment group 2.
#' \item \code{eventsPerStage}: The observed number of events per stage
#' in both treatment groups.
#' \item \code{rejectPerStage}: 1 if null hypothesis can be rejected, 0 otherwise.
#' \item \code{eventsNotAchieved}: 1 if number of events could not be reached with
#' observed number of subjects, 0 otherwise.
#' \item \code{futilityPerStage}: 1 if study should be stopped for futility, 0 otherwise.
#' \item \code{testStatistic}: The test statistic that is used for the test decision,
#' depends on which design was chosen (group sequential, inverse normal,
#' or Fisher combination test)'
#' \item \code{logRankStatistic}: Z-score statistic which corresponds to a one-sided
#' log-rank test at considered stage.
#' \item \code{conditionalPowerAchieved}: The conditional power for the subsequent stage of the trial for
#' selected sample size and effect. The effect is either estimated from the data or can be
#' user defined with \code{thetaH1} or \code{pi1H1} and \code{pi2H1}.
#' \item \code{trialStop}: \code{TRUE} if study should be stopped for efficacy or futility or final stage, \code{FALSE} otherwise.
#' \item \code{hazardRatioEstimateLR}: The estimated hazard ratio, derived from the
#' log-rank statistic.
#' }
#' A subset of variables is provided for \code{\link[=getSimulationMeans]{getSimulationMeans()}}, \code{\link[=getSimulationRates]{getSimulationRates()}}, \code{\link[=getSimulationMultiArmMeans]{getSimulationMultiArmMeans()}},\cr
#' \code{\link[=getSimulationMultiArmRates]{getSimulationMultiArmRates()}}, or \code{\link[=getSimulationMultiArmSurvival]{getSimulationMultiArmSurvival()}}.
#'
#' @template return_dataframe
#'
#' @examples
#' \dontrun{
#' results <- getSimulationSurvival(
#' pi1 = seq(0.3, 0.6, 0.1), pi2 = 0.3, eventTime = 12,
#' accrualTime = 24, plannedEvents = 40, maxNumberOfSubjects = 200,
#' maxNumberOfIterations = 50
#' )
#' data <- getData(results)
#' head(data)
#' dim(data)
#' }
#'
#' @export
#'
getData <- function(x) {
if (!inherits(x, "SimulationResults")) { # or 'Dataset'
stop(
C_EXCEPTION_TYPE_ILLEGAL_ARGUMENT,
"'x' must be a 'SimulationResults' object; for example, use getSimulationMeans() to create one"
)
}
return(x$.data)
}
#' @rdname getData
#' @export
getData.SimulationResults <- function(x) {
return(x$.data)
}
.getAggregatedDataByIterationNumber <- function(rawData, iterationNumber, pi1 = NA_real_) {
if (!is.na(pi1)) {
if (is.null(rawData[["pi1"]])) {
stop(C_EXCEPTION_TYPE_RUNTIME_ISSUE, "'rawData' does not contains a 'pi1' column")
}
subData <- rawData[rawData$iterationNumber == iterationNumber & rawData$pi1 == pi1, ]
if (nrow(subData) == 0) {
return(NULL)
}
} else {
subData <- rawData[rawData$iterationNumber == iterationNumber, ]
}
eventsPerStage1 <- sum(subData$event[subData$treatmentGroup == 1])
eventsPerStage2 <- sum(subData$event[subData$treatmentGroup == 2])
result <- data.frame(
iterationNumber = iterationNumber,
pi1 = pi1,
stageNumber = subData$stopStage[1],
analysisTime = max(subData$lastObservationTime, na.rm = TRUE),
numberOfSubjects = nrow(subData),
eventsPerStage1 = eventsPerStage1,
eventsPerStage2 = eventsPerStage2,
eventsPerStage = eventsPerStage1 + eventsPerStage2
)
if (is.na(pi1)) {
result <- result[, colnames(result) != "pi1"]
}
return(result)
}
.getAggregatedData <- function(rawData) {
iterationNumbers <- sort(unique(rawData$iterationNumber))
pi1Vec <- rawData[["pi1"]]
if (!is.null(pi1Vec)) {
pi1Vec <- sort(unique(na.omit(rawData$pi1)))
}
data <- NULL
if (!is.null(pi1Vec) && length(pi1Vec) > 0) {
for (iterationNumber in iterationNumbers) {
for (pi1 in pi1Vec) {
row <- .getAggregatedDataByIterationNumber(rawData, iterationNumber, pi1)
if (!is.null(row)) {
if (is.null(data)) {
data <- row
} else {
data <- rbind(data, row)
}
}
}
}
} else {
for (iterationNumber in iterationNumbers) {
row <- .getAggregatedDataByIterationNumber(rawData, iterationNumber)
if (!is.null(row)) {
if (is.null(data)) {
data <- row
} else {
data <- rbind(data, row)
}
}
}
}
return(data)
}
#'
#' @title
#' Get Simulation Raw Data for Survival
#'
#' @description
#' Returns the raw survival data which was generated for simulation.
#'
#' @param x A \code{\link{SimulationResults}} object created by \code{\link[=getSimulationSurvival]{getSimulationSurvival()}}.
#' @param aggregate Logical. If \code{TRUE} the raw data will be aggregated similar to
#' the result of \code{\link[=getData]{getData()}}, default is \code{FALSE}.
#'
#' @details
#' This function works only if \code{\link[=getSimulationSurvival]{getSimulationSurvival()}} was called with a \cr
#' \code{maxNumberOfRawDatasetsPerStage} > 0 (default is \code{0}).
#'
#' This function can be used to get the simulated raw data from a simulation results
#' object obtained by \code{\link[=getSimulationSurvival]{getSimulationSurvival()}}.
#' Note that \code{\link[=getSimulationSurvival]{getSimulationSurvival()}}
#' must called before with \code{maxNumberOfRawDatasetsPerStage} > 0.
#' The data frame contains the following columns:
#' \enumerate{
#' \item \code{iterationNumber}: The number of the simulation iteration.
#' \item \code{stopStage}: The stage of stopping.
#' \item \code{subjectId}: The subject id (increasing number 1, 2, 3, ...)
#' \item \code{accrualTime}: The accrual time, i.e., the time when the subject entered the trial.
#' \item \code{treatmentGroup}: The treatment group number (1 or 2).
#' \item \code{survivalTime}: The survival time of the subject.
#' \item \code{dropoutTime}: The dropout time of the subject (may be \code{NA}).
#' \item \code{lastObservationTime}: The specific observation time.
#' \item \code{timeUnderObservation}: The time under observation is defined as follows:
#' ```
#' if (event == TRUE) {
#' timeUnderObservation <- survivalTime
#' } else if (dropoutEvent == TRUE) {
#' timeUnderObservation <- dropoutTime
#' } else {
#' timeUnderObservation <- lastObservationTime - accrualTime
#' }
#' ```
#' \item \code{event}: \code{TRUE} if an event occurred; \code{FALSE} otherwise.
#' \item \code{dropoutEvent}: \code{TRUE} if an dropout event occurred; \code{FALSE} otherwise.
#' }
#'
#' @template return_dataframe
#'
#' @examples
#' \dontrun{
#' results <- getSimulationSurvival(
#' pi1 = seq(0.3, 0.6, 0.1), pi2 = 0.3, eventTime = 12,
#' accrualTime = 24, plannedEvents = 40, maxNumberOfSubjects = 200,
#' maxNumberOfIterations = 50, maxNumberOfRawDatasetsPerStage = 5
#' )
#' rawData <- getRawData(results)
#' head(rawData)
#' dim(rawData)
#' }
#'
#' @export
#'
getRawData <- function(x, aggregate = FALSE) {
if (!inherits(x, "SimulationResultsSurvival")) {
stop(
C_EXCEPTION_TYPE_ILLEGAL_ARGUMENT,
"'x' must be a 'SimulationResultsSurvival' object; use getSimulationSurvival() to create one"
)
}
rawData <- x$.rawData
if (is.null(rawData) || ncol(rawData) == 0 || nrow(rawData) == 0) {
stop(
C_EXCEPTION_TYPE_ILLEGAL_ARGUMENT,
"simulation results contain no raw data; ",
"choose a 'maxNumberOfRawDatasetsPerStage' > 0, e.g., ",
"getSimulationSurvival(..., maxNumberOfRawDatasetsPerStage = 1)"
)
}
if (!aggregate) {
return(rawData)
}
return(.getAggregatedData(rawData))
}
.nameEffectMatrixRowsAndColumns = function(effectMatrix, ..., transpose = FALSE) {
if (is.null(effectMatrix) || !is.matrix(effectMatrix)) {
return(effectMatrix)
}
if (isTRUE(transpose)) {
effectMatrix <- t(effectMatrix)
}
if (nrow(effectMatrix) == 0 || ncol(effectMatrix) == 0) {
return(effectMatrix)
}
rownames(effectMatrix) <- paste("Situation", 1:nrow(effectMatrix))
colnames(effectMatrix) <- paste("Arm", 1:ncol(effectMatrix))
return(effectMatrix)
}
.createEffectMatrix <- function(
...,
simulationResults,
typeOfShape = c("linear", "sigmoidEmax", "userDefined"),
effectMatrix,
valueMaxVector,
valueMaxVectorName = c("muMaxVector", "piMaxVector", "omegaMaxVector"),
piControl = NULL,
gED50,
gMax,
slope,
doseLevels) {
typeOfShape <- match.arg(typeOfShape)
valueMaxVectorName <- match.arg(valueMaxVectorName)
if (typeOfShape == "userDefined") {
simulationResults$.setParameterType("effectMatrix", C_PARAM_USER_DEFINED)
return(.nameEffectMatrixRowsAndColumns(effectMatrix))
}
simulationResults$doseLevels <- doseLevels
simulationResults$.setParameterType("doseLevels",
ifelse(is.null(doseLevels) || all(is.na(doseLevels)), C_PARAM_NOT_APPLICABLE, C_PARAM_USER_DEFINED))
if (typeOfShape == "sigmoidEmax") {
.assertIsSingleNumber(gED50, "gED50", naAllowed = FALSE, noDefaultAvailable = TRUE)
if (valueMaxVectorName == "omegaMaxVector") {
effectMatrix <- matrix(valueMaxVector - 1, nrow = length(valueMaxVector), ncol = 1) %*%
matrix(doseLevels^slope / (gED50^slope + doseLevels^slope), nrow = 1, ncol = gMax) + 1
} else {
effectMatrix <- matrix(valueMaxVector, nrow = length(valueMaxVector), ncol = 1) %*%
matrix(doseLevels^slope / (gED50^slope + doseLevels^slope), nrow = 1, ncol = gMax)
}
simulationResults$.setParameterType("effectMatrix", C_PARAM_DERIVED)
return(.nameEffectMatrixRowsAndColumns(effectMatrix))
}
if (typeOfShape == "linear") {
if (valueMaxVectorName == "muMaxVector") {
effectMatrix <-
matrix(valueMaxVector, nrow = length(valueMaxVector), ncol = 1) %*%
matrix(doseLevels / max(doseLevels), nrow = 1, ncol = gMax)
} else if (valueMaxVectorName == "piMaxVector") {
.assertIsSingleNumber(piControl, "piControl", naAllowed = FALSE, noDefaultAvailable = TRUE)
.assertIsInOpenInterval(piControl, "piControl", 0, 1, naAllowed = FALSE)
effectMatrix <- piControl +
matrix(valueMaxVector - piControl, nrow = length(valueMaxVector), ncol = 1) %*%
matrix(doseLevels / max(doseLevels), nrow = 1, ncol = gMax)
} else if (valueMaxVectorName == "omegaMaxVector") {
effectMatrix <-
matrix(valueMaxVector - 1, nrow = length(valueMaxVector), ncol = 1) %*%
matrix(doseLevels / max(doseLevels), nrow = 1, ncol = gMax) + 1
}
simulationResults$.setParameterType("effectMatrix", C_PARAM_DERIVED)
if (!is.null(gED50) && !is.na(gED50)) {
warning("'gED50' (", gED50, ") will be ignored because 'typeOfShape' ",
"is defined as '", typeOfShape, "'",
call. = FALSE
)
}
if (!is.null(slope) && !is.na(slope) && slope != 1) {
warning("'slope' (", slope, ") will be ignored because 'typeOfShape' ",
"is defined as '", typeOfShape, "'",
call. = FALSE
)
}
return(.nameEffectMatrixRowsAndColumns(effectMatrix))
}
stop(C_EXCEPTION_TYPE_RUNTIME_ISSUE, "'typeOfShape' (", typeOfShape, ") not yet implemented")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.