Nothing
#' Bootstrap Sampling
#'
#' A bootstrap sample is a sample that is the same size as the original data
#' set that is made using replacement. This results in analysis samples that
#' have multiple replicates of some of the original rows of the data. The
#' assessment set is defined as the rows of the original data that were not
#' included in the bootstrap sample. This is often referred to as the
#' "out-of-bag" (OOB) sample.
#' @details The argument `apparent` enables the option of an additional
#' "resample" where the analysis and assessment data sets are the same as the
#' original data set. This can be required for some types of analysis of the
#' bootstrap results.
#'
#' @template strata_details
#' @inheritParams vfold_cv
#' @inheritParams make_strata
#' @param times The number of bootstrap samples.
#' @param apparent A logical. Should an extra resample be added where the
#' analysis and holdout subset are the entire data set. This is required for
#' some estimators used by the `summary` function that require the apparent
#' error rate.
#' @export
#' @return A tibble with classes `bootstraps`, `rset`, `tbl_df`, `tbl`, and
#' `data.frame`. The results include a column for the data split objects and a
#' column called `id` that has a character string with the resample identifier.
#' @examplesIf rlang::is_installed("modeldata")
#' bootstraps(mtcars, times = 2)
#' bootstraps(mtcars, times = 2, apparent = TRUE)
#'
#' library(purrr)
#' library(modeldata)
#' data(wa_churn)
#'
#' set.seed(13)
#' resample1 <- bootstraps(wa_churn, times = 3)
#' map_dbl(
#' resample1$splits,
#' function(x) {
#' dat <- as.data.frame(x)$churn
#' mean(dat == "Yes")
#' }
#' )
#'
#' set.seed(13)
#' resample2 <- bootstraps(wa_churn, strata = churn, times = 3)
#' map_dbl(
#' resample2$splits,
#' function(x) {
#' dat <- as.data.frame(x)$churn
#' mean(dat == "Yes")
#' }
#' )
#'
#' set.seed(13)
#' resample3 <- bootstraps(wa_churn, strata = tenure, breaks = 6, times = 3)
#' map_dbl(
#' resample3$splits,
#' function(x) {
#' dat <- as.data.frame(x)$churn
#' mean(dat == "Yes")
#' }
#' )
#' @export
bootstraps <-
function(data,
times = 25,
strata = NULL,
breaks = 4,
pool = 0.1,
apparent = FALSE,
...) {
check_dots_empty()
if (!missing(strata)) {
strata <- tidyselect::vars_select(names(data), !!enquo(strata))
if (length(strata) == 0) strata <- NULL
}
strata_check(strata, data)
split_objs <-
boot_splits(
data = data,
times = times,
strata = strata,
breaks = breaks,
pool = pool
)
if (apparent) {
split_objs <- bind_rows(split_objs, apparent(data))
}
if (!is.null(strata)) names(strata) <- NULL
boot_att <- list(
times = times,
apparent = apparent,
strata = strata,
breaks = breaks,
pool = pool
)
new_rset(
splits = split_objs$splits,
ids = split_objs$id,
attrib = boot_att,
subclass = c("bootstraps", "rset")
)
}
# Get the indices of the analysis set from the analysis set (= bootstrap sample)
boot_complement <- function(ind, n) {
list(analysis = ind, assessment = NA)
}
boot_splits <-
function(data,
times = 25,
strata = NULL,
breaks = 4,
pool = 0.1) {
n <- nrow(data)
if (is.null(strata)) {
indices <- purrr::map(rep(n, times), sample, replace = TRUE)
} else {
stratas <- tibble::tibble(
idx = 1:n,
strata = make_strata(getElement(data, strata),
breaks = breaks,
pool = pool
)
)
stratas <- split_unnamed(stratas, stratas$strata)
stratas <-
purrr::map(
stratas,
strat_sample,
prop = 1,
times = times,
replace = TRUE
) %>%
list_rbind()
indices <- split_unnamed(stratas$idx, stratas$rs_id)
}
indices <- lapply(indices, boot_complement, n = n)
split_objs <-
purrr::map(indices, make_splits, data = data, class = "boot_split")
all_assessable <- purrr::map(split_objs, function(x) nrow(assessment(x)))
if (any(all_assessable == 0)) {
rlang::warn(
"Some assessment sets contained zero rows.",
call = rlang::caller_env()
)
}
list(
splits = split_objs,
id = names0(length(split_objs), "Bootstrap")
)
}
#' Group Bootstraps
#'
#' Group bootstrapping creates splits of the data based
#' on some grouping variable (which may have more than a single row
#' associated with it). A common use of this kind of resampling is when you
#' have repeated measures of the same subject.
#' A bootstrap sample is a sample that is the same size as the original data
#' set that is made using replacement. This results in analysis samples that
#' have multiple replicates of some of the original rows of the data. The
#' assessment set is defined as the rows of the original data that were not
#' included in the bootstrap sample. This is often referred to as the
#' "out-of-bag" (OOB) sample.
#' @details The argument `apparent` enables the option of an additional
#' "resample" where the analysis and assessment data sets are the same as the
#' original data set. This can be required for some types of analysis of the
#' bootstrap results.
#'
#' @inheritParams bootstraps
#' @inheritParams make_groups
#' @export
#' @return An tibble with classes `group_bootstraps` `bootstraps`, `rset`,
#' `tbl_df`, `tbl`, and `data.frame`. The results include a column for the data
#' split objects and a column called `id` that has a character string with the
#' resample identifier.
#' @examplesIf rlang::is_installed("modeldata")
#' data(ames, package = "modeldata")
#'
#' set.seed(13)
#' group_bootstraps(ames, Neighborhood, times = 3)
#' group_bootstraps(ames, Neighborhood, times = 3, apparent = TRUE)
#'
#' @export
group_bootstraps <- function(data,
group,
times = 25,
apparent = FALSE,
...,
strata = NULL,
pool = 0.1) {
check_dots_empty()
group <- validate_group({{ group }}, data)
if (!missing(strata)) {
strata <- check_grouped_strata({{ group }}, {{ strata }}, pool, data)
}
split_objs <-
group_boot_splits(
data = data,
group = group,
times = times,
strata = strata,
pool = pool
)
## We remove the holdout indices since it will save space and we can
## derive them later when they are needed.
split_objs$splits <- map(split_objs$splits, rm_out)
if (apparent) {
split_objs <- bind_rows(split_objs, apparent(data))
}
# This is needed for printing checks; strata can't be missing
if (is.null(strata)) strata <- FALSE
boot_att <- list(
times = times,
apparent = apparent,
strata = strata,
pool = pool,
group = group
)
new_rset(
splits = split_objs$splits,
ids = split_objs$id,
attrib = boot_att,
subclass = c("group_bootstraps", "bootstraps", "group_rset", "rset")
)
}
group_boot_splits <- function(data, group, times = 25, strata = NULL, pool = 0.1) {
group <- getElement(data, group)
if (!is.null(strata)) {
strata <- getElement(data, strata)
strata <- as.character(strata)
strata <- make_strata(strata, pool = pool)
}
n <- nrow(data)
indices <- make_groups(
data,
group,
times,
balance = "prop",
prop = 1,
replace = TRUE,
strata = strata
)
indices <- lapply(indices, boot_complement, n = n)
split_objs <- purrr::map(
indices,
make_splits,
data = data,
class = c("group_boot_split", "boot_split")
)
all_assessable <- purrr::map(split_objs, function(x) nrow(assessment(x)))
if (any(all_assessable == 0)) {
rlang::warn(
c(
"Some assessment sets contained zero rows.",
i = "Consider using a non-grouped resampling method."
),
call = rlang::caller_env()
)
}
list(
splits = split_objs,
id = names0(length(split_objs), "Bootstrap")
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.