R/compat-vctrs-helpers.R

Defines functions df_reconstruct df_size tib_upcast col_equals_inner_resamples col_starts_with_id col_equals_splits test_data rset_reconstructable rset_reconstruct

Documented in rset_reconstruct

#' Extending rsample with new rset subclasses
#'
#' `rset_reconstruct()` encapsulates the logic for allowing new rset
#' subclasses to work properly with vctrs (through `vctrs::vec_restore()`) and
#' dplyr (through `dplyr::dplyr_reconstruct()`). It is intended to be a
#' developer tool, and is not required for normal usage of rsample.
#'
#' rset objects are considered "reconstructable" after a vctrs/dplyr operation
#' if:
#'
#' - `x` and `to` both have an identical column named `"splits"` (column
#'   and row order do not matter).
#'
#' - `x` and `to` both have identical columns prefixed with `"id"` (column
#'   and row order do not matter).
#'
#' @param x A data frame to restore to an rset subclass.
#' @param to An rset subclass to restore to.
#'
#' @return `x` restored to the rset subclass of `to`.
#'
#' @export
#' @examples
#' to <- bootstraps(mtcars, times = 25)
#'
#' # Imitate a vctrs/dplyr operation,
#' # where the class might be lost along the way
#' x <- tibble::as_tibble(to)
#'
#' # Say we added a new column to `x`. Here we mock a `mutate()`.
#' x$foo <- "bar"
#'
#' # This is still reconstructable to `to`
#' rset_reconstruct(x, to)
#'
#' # Say we lose the first row
#' x <- x[-1,]
#'
#' # This is no longer reconstructable to `to`, as `x` is no longer an rset
#' # bootstraps object with 25 bootstraps if one is lost!
#' rset_reconstruct(x, to)
rset_reconstruct <- function(x, to) {
  if (rset_reconstructable(x, to)) {
    df_reconstruct(x, to)
  } else {
    tib_upcast(x)
  }
}

# ------------------------------------------------------------------------------

# Two data frames are considered identical by `rset_reconstructable()` if the rset
# sub-data-frames are identical. This means that if we select out the rset
# specific columns, they should be exactly the same (modulo reordering).

# It is expected that `to` is an rset object already, but `x` can be a
# bare data frame, or even a named list.

rset_reconstructable <- function(x, to) {
  x_names <- names(x)
  to_names <- names(to)

  x_rset_indicator <- col_equals_splits(x_names) | col_starts_with_id(x_names)
  to_rset_indicator <- col_equals_splits(to_names) | col_starts_with_id(to_names)

  # Special casing of `nested_cv` to also look for `inner_resamples`
  if (inherits(to, "nested_cv")) {
    x_rset_indicator <- x_rset_indicator | col_equals_inner_resamples(x_names)
    to_rset_indicator <- to_rset_indicator | col_equals_inner_resamples(to_names)
  }

  x_rset_names <- x_names[x_rset_indicator]
  to_rset_names <- to_names[to_rset_indicator]

  # Ignore ordering
  x_rset_names <- sort(x_rset_names)
  to_rset_names <- sort(to_rset_names)

  # Early return if names aren't identical
  if (!identical(x_rset_names, to_rset_names)) {
    return(FALSE)
  }

  # Avoid all non-bare-data-frame S3 dispatch and
  # don't compare outer data frame attributes.
  # Only look at column names and actual column data.
  x <- new_data_frame(x)
  to <- new_data_frame(to)

  # Early return if number of rows doesn't match
  if (!identical(vec_size(x), vec_size(to))) {
    return(FALSE)
  }

  x_rset_cols <- x[x_rset_names]
  to_rset_cols <- to[to_rset_names]

  # Row order doesn't matter
  x_rset_cols <- vec_sort(x_rset_cols)
  to_rset_cols <- vec_sort(to_rset_cols)

  # Check identical structures
  identical(x_rset_cols, to_rset_cols)
}

# ------------------------------------------------------------------------------

test_data <- function() {
  data.frame(
    x = 1:50,
    y = rep(c(1, 2), each = 25),
    index = as.Date(0:49, origin = "1970-01-01")
  )
}

# Keep this list up to date with known rset subclasses for testing.
# Delay assignment because we are creating this directly in the R script
# and not all of the required helpers might have been sourced yet.
delayedAssign("rset_subclasses", {
  list(
    bootstraps       = bootstraps(test_data()),
    vfold_cv         = vfold_cv(test_data(), v = 10, repeats = 2),
    group_vfold_cv   = group_vfold_cv(test_data(), y),
    loo_cv           = loo_cv(test_data()),
    mc_cv            = mc_cv(test_data()),
    nested_cv        = nested_cv(test_data(), outside = vfold_cv(v = 3), inside = bootstraps(times = 5)),
    validation_split = validation_split(test_data()),
    rolling_origin   = rolling_origin(test_data()),
    sliding_window   = sliding_window(test_data()),
    sliding_index    = sliding_index(test_data(), index),
    sliding_period   = sliding_period(test_data(), index, "week"),
    manual_rset      = manual_rset(bootstraps(test_data())$splits[1:2], c("ID1", "ID2")),
    apparent         = apparent(test_data())
  )
})

# ------------------------------------------------------------------------------

col_equals_splits <- function(x) {
  vec_equal(x, "splits")
}

col_starts_with_id <- function(x) {
  grepl("(^id$)|(^id[1-9]$)", x)
}

col_equals_inner_resamples <- function(x) {
  vec_equal(x, "inner_resamples")
}

# ------------------------------------------------------------------------------

# Maybe this should live in vctrs?
# Fallback to a tibble from the current data frame subclass.
# Removes subclass specific attributes and additional ones added by the user.
tib_upcast <- function(x) {
  size <- df_size(x)

  # Strip all attributes except names to construct
  # a bare list to build the tibble back up from.
  attributes(x) <- list(names = names(x))

  tibble::new_tibble(x, nrow = size)
}

df_size <- function(x) {
  if (!is.list(x)) {
    rlang::abort("Cannot get the df size of a non-list.")
  }

  if (length(x) == 0L) {
    return(0L)
  }

  col <- x[[1L]]

  vec_size(col)
}

# ------------------------------------------------------------------------------

# Maybe this should live in vctrs?
df_reconstruct <- function(x, to) {
  attrs <- attributes(to)
  attrs$names <- names(x)
  attrs$row.names <- .row_names_info(x, type = 0L)
  attributes(x) <- attrs
  x
}

Try the rsample package in your browser

Any scripts or data that you put into this service are public.

rsample documentation built on May 8, 2021, 9:06 a.m.