Nothing
### Terrence D. Jorgensen
### Last updated: 22 April 2022
##' Parcel-Allocation Variability in Model Ranking
##'
##' This function quantifies and assesses the consequences of parcel-allocation
##' variability for model ranking of structural equation models (SEMs) that
##' differ in their structural specification but share the same parcel-level
##' measurement specification (see Sterba & Rights, 2016). This function calls
##' \code{\link{parcelAllocation}}---which can be used with only one SEM in
##' isolation---to fit two (assumed) nested models to each of a specified number
##' of random item-to-parcel allocations. Output includes summary information
##' about the distribution of model selection results (including plots) and the
##' distribution of results for each model individually, across allocations
##' within-sample. Note that this function can be used when selecting among more
##' than two competing structural models as well (see instructions below
##' involving the \code{seed} argument).
##'
##' This is based on a SAS macro \code{ParcelAlloc} (Sterba & MacCallum, 2010).
##' The \code{PAVranking} function produces results discussed in Sterba and
##' Rights (2016) relevant to the assessment of parcel-allocation variability in
##' model selection and model ranking. Specifically, the \code{PAVranking}
##' function first calls \code{\link{parcelAllocation}} to generate a given
##' number (\code{nAlloc}) of item-to-parcel allocations, fitting both specified
##' models to each allocation, and providing summaryies of PAV for each model.
##' Additionally, \code{PAVranking} provides the following new summaries:
##'
##' \itemize{
##' \item{PAV in model selection index values and model ranking between
##' Models \code{model0} and \code{model1}.}
##' \item{The proportion of allocations that converged and the proportion of
##' proper solutions (results are summarized for allocations with both
##' converged and proper allocations only).}
##' }
##'
##' For further details on the benefits of the random allocation of items to
##' parcels, see Sterba (2011) and Sterba and MacCallum (2010).
##'
##' To test whether nested models have equivalent fit, results can be pooled
##' across allocations using the same methods available for pooling results
##' across multiple imputations of missing data (see \bold{Examples}).
##'
##' \emph{Note}: This function requires the \code{lavaan} package. Missing data
##' must be coded as \code{NA}. If the function returns \code{"Error in
##' plot.new() : figure margins too large"}, the user may need to increase
##' size of the plot window (e.g., in RStudio) and rerun the function.
##'
##'
##' @importFrom stats sd
##' @importFrom lavaan parTable lavListInspect lavaanList
##' @importFrom graphics hist
##'
##' @param model0,model1 \code{\link[lavaan]{lavaan}} model syntax specifying
##' nested models (\code{model0} within \code{model1}) to be fitted
##' to the same parceled data. Note that there can be a mixture of
##' items and parcels (even within the same factor), in case certain items
##' should never be parceled. Can be a character string or parameter table.
##' Also see \code{\link[lavaan]{lavaanify}} for more details.
##' @param data A \code{data.frame} containing all observed variables appearing
##' in the \code{model}, as well as those in the \code{item.syntax} used to
##' create parcels. If the data have missing values, multiple imputation
##' before parceling is recommended: submit a stacked data set (with a variable
##' for the imputation number, so they can be separateed later) and set
##' \code{do.fit = FALSE} to return the list of \code{data.frame}s (one per
##' allocation), each of which is a stacked, imputed data set with parcels.
##' @param parcel.names \code{character} vector containing names of all parcels
##' appearing as indicators in \code{model}.
##' @param item.syntax \link[lavaan]{lavaan} model syntax specifying the model
##' that would be fit to all of the unparceled items, including items that
##' should be randomly allocated to parcels appearing in \code{model}.
##' @param nAlloc The number of random items-to-parcels allocations to generate.
##' @param fun \code{character} string indicating the name of the
##' \code{\link[lavaan]{lavaan}} function used to fit \code{model} to
##' \code{data}. Can only take the values \code{"lavaan"}, \code{"sem"},
##' \code{"cfa"}, or \code{"growth"}.
##' @param alpha Alpha level used as criterion for significance.
##' @param bic.crit Criterion for assessing evidence in favor of one model
##' over another. See Rafferty (1995) for guidelines (default is "very
##' strong evidence" in favor of the model with lower BIC).
##' @param fit.measures \code{character} vector containing names of fit measures
##' to request from each fitted \code{\link[lavaan]{lavaan}} model. See the
##' output of \code{\link[lavaan]{fitMeasures}} for a list of available measures.
##' @param \dots Additional arguments to be passed to
##' \code{\link[lavaan]{lavaanList}}. See also \code{\link[lavaan]{lavOptions}}
##' @param show.progress If \code{TRUE}, show a \code{\link[utils]{txtProgressBar}}
##' indicating how fast each model-fitting iterates over allocations.
##' @param iseed (Optional) Random seed used for parceling items. When the same
##' random seed is specified and the program is re-run, the same allocations
##' will be generated. The seed argument can be used to assess parcel-allocation
##' variability in model ranking when considering more than two models. For each
##' pair of models under comparison, the program should be rerun using the same
##' random seed. Doing so ensures that multiple model comparisons will employ
##' the same set of parcel datasets. \emph{Note}: When using \pkg{parallel}
##' options, you must first type \code{RNGkind("L'Ecuyer-CMRG")} into the R
##' Console, so that the seed will be controlled across cores.
##' @param warn Whether to print warnings when fitting models to each allocation
##'
##' @return
##' \item{model0.results}{Results returned by \code{\link{parcelAllocation}}
##' for \code{model0} (see the \bold{Value} section).}
##' \item{model1.results}{Results returned by \code{\link{parcelAllocation}}
##' for \code{model1} (see the \bold{Value} section).}
##' \item{model0.v.model1}{A \code{list} of model-comparison results, including
##' the following: \itemize{
##' \item{\code{LRT_Summary:}}{ The average likelihood ratio test across
##' allocations, as well as the \emph{SD}, minimum, maximum, range, and the
##' proportion of allocations for which the test was significant.}
##' \item{\code{Fit_Index_Differences:}}{ Differences in fit indices, organized
##' by what proportion favored each model and among those, what the average
##' difference was.}
##' \item{\code{Favored_by_BIC:}}{ The proportion of allocations in which each
##' model met the criterion (\code{bic.crit}) for a substantial difference
##' in fit.}
##' \item{\code{Convergence_Summary:}}{ The proportion of allocations in which
##' each model (and both models) converged on a solution.}
##' } Histograms are also printed to the current plot-output device.}
##'
##' @author
##' Terrence D. Jorgensen (University of Amsterdam; \email{TJorgensen314@@gmail.com})
##'
##' @seealso \code{\link{parcelAllocation}} for fitting a single model,
##' \code{\link{poolMAlloc}} for choosing the number of allocations
##'
##' @references
##' Raftery, A. E. (1995). Bayesian model selection in social
##' research. \emph{Sociological Methodology, 25}, 111--163. \doi{10.2307/271063}
##'
##' Sterba, S. K. (2011). Implications of parcel-allocation variability for
##' comparing fit of item-solutions and parcel-solutions. \emph{Structural
##' Equation Modeling, 18}(4), 554--577.\doi{10.1080/10705511.2011.607073}
##'
##' Sterba, S. K., & MacCallum, R. C. (2010). Variability in parameter estimates
##' and model fit across repeated allocations of items to parcels.
##' \emph{Multivariate Behavioral Research, 45}(2), 322--358.
##' \doi{10.1080/00273171003680302}
##'
##' Sterba, S. K., & Rights, J. D. (2016). Accounting for parcel-allocation
##' variability in practice: Combining sources of uncertainty and choosing the
##' number of allocations. \emph{Multivariate Behavioral Research, 51}(2--3),
##' 296--313. \doi{10.1080/00273171.2016.1144502}
##'
##' Sterba, S. K., & Rights, J. D. (2017). Effects of parceling on model
##' selection: Parcel-allocation variability in model ranking.
##' \emph{Psychological Methods, 22}(1), 47--68. \doi{10.1037/met0000067}
##'
##' @examples
##'
##' ## Specify the item-level model (if NO parcels were created)
##' ## This must apply to BOTH competing models
##'
##' item.syntax <- c(paste0("f1 =~ f1item", 1:9),
##' paste0("f2 =~ f2item", 1:9))
##' cat(item.syntax, sep = "\n")
##' ## Below, we reduce the size of this same model by
##' ## applying different parceling schemes
##'
##' ## Specify a 2-factor CFA with correlated factors, using 3-indicator parcels
##' mod1 <- '
##' f1 =~ par1 + par2 + par3
##' f2 =~ par4 + par5 + par6
##' '
##' ## Specify a more restricted model with orthogonal factors
##' mod0 <- '
##' f1 =~ par1 + par2 + par3
##' f2 =~ par4 + par5 + par6
##' f1 ~~ 0*f2
##' '
##' ## names of parcels (must apply to BOTH models)
##' (parcel.names <- paste0("par", 1:6))
##'
##' \dontrun{
##' ## override default random-number generator to use parallel options
##' RNGkind("L'Ecuyer-CMRG")
##'
##' PAVranking(model0 = mod0, model1 = mod1, data = simParcel, nAlloc = 100,
##' parcel.names = parcel.names, item.syntax = item.syntax,
##' std.lv = TRUE, # any addition lavaan arguments
##' parallel = "snow") # parallel options
##'
##'
##'
##' ## POOL RESULTS by treating parcel allocations as multiple imputations.
##' ## Details provided in Sterba & Rights (2016); see ?poolMAlloc.
##'
##' ## save list of data sets instead of fitting model yet
##' dataList <- parcelAllocation(mod.parcels, data = simParcel, nAlloc = 100,
##' parcel.names = parcel.names,
##' item.syntax = item.syntax,
##' do.fit = FALSE)
##' ## now fit each model to each data set
##' fit0 <- cfa.mi(mod0, data = dataList, std.lv = TRUE)
##' fit1 <- cfa.mi(mod1, data = dataList, std.lv = TRUE)
##' anova(fit0, fit1) # pooled test statistic comparing models
##' class?lavaan.mi # find more methods for pooling results
##' }
##'
##' @export
PAVranking <- function(model0, model1, data, parcel.names, item.syntax,
nAlloc = 100, fun = "sem", alpha = .05, bic.crit = 10,
fit.measures = c("chisq","df","cfi","tli","rmsea",
"srmr","logl","aic","bic","bic2"), ...,
show.progress = FALSE, iseed = 12345, warn = FALSE) {
if (alpha >= 1 | alpha <= 0) stop('alpha level must be between 0 and 1')
bic.crit <- abs(bic.crit)
## fit each model
out0 <- parcelAllocation(model = model0, data = data, nAlloc = nAlloc,
parcel.names = parcel.names, item.syntax = item.syntax,
fun = fun, alpha = alpha, fit.measures = fit.measures,
..., show.progress = show.progress, iseed = iseed,
return.fit = TRUE, warn = warn)
out1 <- parcelAllocation(model = model1, data = data, nAlloc = nAlloc,
parcel.names = parcel.names, item.syntax = item.syntax,
fun = fun, alpha = alpha, fit.measures = fit.measures,
..., show.progress = show.progress, iseed = iseed,
return.fit = TRUE, warn = warn)
## convergence summary
conv0 <- out0$Model@meta$ok
conv1 <- out1$Model@meta$ok
conv01 <- conv0 & conv1
conv <- data.frame(Proportion_Converged = sapply(list(conv0, conv1, conv01), mean),
row.names = c("model0","model1","Both_Models"))
## add proper solutions? I would advise against
## check df matches assumed nesting
DF0 <- out0$Fit["df", "Avg"]
DF1 <- out1$Fit["df", "Avg"]
if (DF0 == DF1) stop('Models have identical df, so they cannot be compared.')
if (DF0 < DF1) warning('model0 should be nested within model1, ',
'but df_0 < df_1. Should models be swapped?')
temp <- out0
out0 <- out1
out1 <- temp
## Re-run lavaanList to collect model-comparison results
if (show.progress) message('Re-fitting model0 to collect model-comparison ',
'statistics\n')
oldCall <- out0$Model@call
oldCall$model <- parTable(out0$Model)
oldCall$dataList <- out0$Model@external$dataList[conv01]
if (!is.null(oldCall$parallel)) {
if (oldCall$parallel == "snow") {
oldCall$parallel <- "no"
oldCall$ncpus <- 1L
if (warn) warning("Unable to pass lavaan::lavTestLRT() arguments when ",
"parallel = 'snow'. Switching to parallel = 'no'. ",
"Unless using Windows, parallel = 'multicore' works.")
}
}
PT1 <- parTable(out1$Model)
op1 <- lavListInspect(out1$Model, "options")
oldCall$FUN <- function(obj) {
fit1 <- try(lavaan::lavaan(model = PT1, slotOptions = op1,
slotData = obj@Data), silent = TRUE)
if (inherits(fit1, "try-error")) return("fit failed")
out <- lavaan::lavTestLRT(obj, fit1)
if (inherits(out, "try-error")) return("lavTestLRT() failed")
out
}
fit01 <- eval(as.call(oldCall))
## check if there are any results
noLRT <- sapply(fit01@funList, is.character)
if (all(noLRT)) stop("No success using lavTestScore() on any allocations.")
## anova() results
CHIs <- sapply(fit01@funList[!noLRT], "[", i = 2, j = "Chisq diff")
pVals <- sapply(fit01@funList[!noLRT], "[", i = 2, j = "Pr(>Chisq)")
LRT <- c(`Avg LRT` = mean(CHIs), df = abs(DF0 - DF1), SD = sd(CHIs),
Min = min(CHIs), Max = max(CHIs), Range = max(CHIs) - min(CHIs),
`% Sig` = mean(pVals < alpha))
class(LRT) <- c("lavaan.vector","numeric")
## differences in fit indices
indices <- fit.measures[!grepl(pattern = "chisq|df|pvalue", fit.measures)]
Fit0 <- do.call(cbind, out0$Model@funList[conv01])[indices, ]
Fit1 <- do.call(cbind, out1$Model@funList[conv01])[indices, ]
## higher values for model0
Fit01 <- Fit0 - Fit1
higher0 <- Fit0 > Fit1
perc0 <- rowMeans(higher0)
avg0 <- rowMeans(Fit01 * higher0)
## higher values for model1
Fit10 <- Fit1 - Fit0
higher1 <- Fit1 > Fit0
perc1 <- rowMeans(higher1)
avg1 <- rowMeans(Fit10 * higher1)
fitDiff <- data.frame(Prop0 = perc0, Avg0 = avg0, Prop1 = perc1, Avg1 = avg1)
class(fitDiff) <- c("lavaan.data.frame","data.frame")
attr(fitDiff, "header") <- paste("Note: Higher values of goodness-of-fit",
"indices (e.g., CFI) favor that model, but",
"higher values of badness-of-fit indices",
"(e.g., RMSEA) indicate the competing model",
"is favored.\n\n'Prop0' indicates the",
"proportion of allocations for which each",
"index was higher for model0 (likewise,",
"'Prop1' indicates this for model1).\n",
"\nAmong those allocations, 'Avg0' or 'Avg1'",
"indicates the average amount by which the",
"index was higher for that model.")
## favored by BIC
favorBIC <- NULL
if (any(grepl(pattern = "bic", fit.measures))) {
if ("bic" %in% fit.measures) {
highBIC <- abs(Fit01["bic",]) >= bic.crit
favor0 <- mean(higher1["bic",] & highBIC)
favor1 <- mean(higher0["bic",] & highBIC)
favorBIC <- data.frame("bic" = c(favor0, favor1),
row.names = paste("Evidence Favoring Model", 0:1))
}
if ("bic2" %in% fit.measures) {
highBIC <- abs(Fit01["bic2",]) >= bic.crit
favor0 <- mean(higher1["bic2",] & highBIC)
favor1 <- mean(higher0["bic2",] & highBIC)
favorBIC2 <- data.frame("bic2" = c(favor0, favor1),
row.names = paste("Evidence Favoring Model", 0:1))
if (is.null(favorBIC)) {
favorBIC <- favorBIC2
} else favorBIC <- cbind(favorBIC, favorBIC2)
}
class(favorBIC) <- c("lavaan.data.frame","data.frame")
attr(favorBIC, "header") <- paste("Percent of Allocations with |BIC Diff| >",
bic.crit)
}
## return results
list(Model0_Results = out0[c("Estimates","SE","Fit")],
Model1_Results = out1[c("Estimates","SE","Fit")],
Model0.v.Model1 = list(LRT_Summary = LRT,
Fit_Index_Differences = fitDiff,
Favored_by_BIC = favorBIC,
Convergence_Summary = conv))
}
## ------------
## old function
## ------------
## @param nPerPar A list in which each element is a vector, corresponding to
## each factor, indicating sizes of parcels. If variables are left out of
## parceling, they should not be accounted for here (i.e., there should not be
## parcels of size "1").
## @param facPlc A list of vectors, each corresponding to a factor, specifying
## the item indicators of that factor (whether included in parceling or not).
## Either variable names or column numbers. Variables not listed will not be
## modeled or included in output datasets.
## @param nAlloc The number of random allocations of items to parcels to
## generate.
## @param syntaxA lavaan syntax for Model A. Note that, for likelihood ratio
## test (LRT) results to be interpreted, Model A should be nested within Model
## B (though the function will still provide results when Models A and B are
## nonnested).
## @param syntaxB lavaan syntax for Model B. Note that, for likelihood ratio
## test (LRT) results to be appropriate, Model A should be nested within Model
## B (though the function will still provide results when Models A and B are
## nonnested).
## @param dataset Item-level dataset
## @param parceloutput folder where parceled data sets will be outputted (note
## for Windows users: file path must specified using forward slashes).
## @param names (Optional) A character vector containing the names of parceled
## variables.
## @param leaveout (Optional) A vector of variables to be left out of
## randomized parceling. Either variable names or column numbers are allowed.
## @examples
##
## \dontrun{
## ## lavaan syntax for Model A: a 2 Uncorrelated
## ## factor CFA model to be fit to parceled data
##
## parmodelA <- '
## f1 =~ NA*p1f1 + p2f1 + p3f1
## f2 =~ NA*p1f2 + p2f2 + p3f2
## p1f1 ~ 1
## p2f1 ~ 1
## p3f1 ~ 1
## p1f2 ~ 1
## p2f2 ~ 1
## p3f2 ~ 1
## p1f1 ~~ p1f1
## p2f1 ~~ p2f1
## p3f1 ~~ p3f1
## p1f2 ~~ p1f2
## p2f2 ~~ p2f2
## p3f2 ~~ p3f2
## f1 ~~ 1*f1
## f2 ~~ 1*f2
## f1 ~~ 0*f2
## '
##
## ## lavaan syntax for Model B: a 2 Correlated
## ## factor CFA model to be fit to parceled data
##
## parmodelB <- '
## f1 =~ NA*p1f1 + p2f1 + p3f1
## f2 =~ NA*p1f2 + p2f2 + p3f2
## p1f1 ~ 1
## p2f1 ~ 1
## p3f1 ~ 1
## p1f2 ~ 1
## p2f2 ~ 1
## p3f2 ~ 1
## p1f1 ~~ p1f1
## p2f1 ~~ p2f1
## p3f1 ~~ p3f1
## p1f2 ~~ p1f2
## p2f2 ~~ p2f2
## p3f2 ~~ p3f2
## f1 ~~ 1*f1
## f2 ~~ 1*f2
## f1 ~~ f2
## '
##
## ## specify items for each factor
## f1name <- colnames(simParcel)[1:9]
## f2name <- colnames(simParcel)[10:18]
##
## ## run function
## PAVranking(nPerPar = list(c(3,3,3), c(3,3,3)), facPlc = list(f1name,f2name),
## nAlloc = 100, parceloutput = 0, leaveout = 0,
## syntaxA = parmodelA, syntaxB = parmodelB, dataset = simParcel,
## names = list("p1f1","p2f1","p3f1","p1f2","p2f2","p3f2"))
## }
##
# PAVranking <- function(nPerPar, facPlc, nAlloc = 100, parceloutput = 0, syntaxA, syntaxB,
# dataset, names = NULL, leaveout = 0, seed = NA, ...) {
# if (is.null(names))
# names <- matrix(NA, length(nPerPar), 1)
# ## set random seed if specified
# if (is.na(seed) == FALSE)
# set.seed(seed)
# ## allow many tables to be outputted
# options(max.print = 1e+06)
#
# ## Create parceled datasets
# if (is.character(dataset)) dataset <- utils::read.csv(dataset)
# dataset <- as.matrix(dataset)
#
# if (nAlloc < 2)
# stop("Minimum of two allocations required.")
#
# if (is.list(facPlc)) {
# if (is.numeric(facPlc[[1]][1]) == FALSE) {
# facPlcb <- facPlc
# Namesv <- colnames(dataset)
#
# for (i in 1:length(facPlc)) {
# for (j in 1:length(facPlc[[i]])) {
# facPlcb[[i]][j] <- match(facPlc[[i]][j], Namesv)
# }
# facPlcb[[i]] <- as.numeric(facPlcb[[i]])
# }
# facPlc <- facPlcb
# }
#
# # facPlc2 <- rep(0, sum(sapply(facPlc, length)))
# facPlc2 <- rep(0, ncol(dataset))
#
# for (i in 1:length(facPlc)) {
# for (j in 1:length(facPlc[[i]])) {
# facPlc2[facPlc[[i]][j]] <- i
# }
# }
# facPlc <- facPlc2
# }
#
# if (leaveout != 0) {
# if (is.numeric(leaveout) == FALSE) {
# leaveoutb <- rep(0, length(leaveout))
# Namesv <- colnames(dataset)
#
# for (i in 1:length(leaveout)) {
# leaveoutb[i] <- match(leaveout[i], Namesv)
# }
# leaveout <- as.numeric(leaveoutb)
# }
# k1 <- 0.001
# for (i in 1:length(leaveout)) {
# facPlc[leaveout[i]] <- facPlc[leaveout[i]] + k1
# k1 <- k1 + 0.001
# }
# }
#
# if (0 %in% facPlc == TRUE) {
# Zfreq <- sum(facPlc == 0)
# for (i in 1:Zfreq) {
# Zplc <- match(0, facPlc)
# dataset <- dataset[, -Zplc]
# facPlc <- facPlc[-Zplc]
# }
# ## this allows for unused variables in dataset, which are specified by zeros, and
# ## deleted
# }
#
# if (is.list(nPerPar)) {
# nPerPar2 <- c()
# for (i in 1:length(nPerPar)) {
# Onesp <- sum(facPlc > i & facPlc < i + 1)
# nPerPar2 <- c(nPerPar2, nPerPar[i], rep(1, Onesp), recursive = TRUE)
# }
# nPerPar <- nPerPar2
# }
#
# Npp <- c()
# for (i in 1:length(nPerPar)) {
# Npp <- c(Npp, rep(i, nPerPar[i]))
# }
#
# Locate <- sort(round(facPlc))
# Maxv <- max(Locate) - 1
#
# if (length(Locate) != length(Npp))
# stop("Parcels incorrectly specified.\",
# \" Check input!")
#
# if (Maxv > 0) {
# ## Bug was here. With 1 factor Maxv=0. Skip this with a single factor
# for (i in 1:Maxv) {
# Mat <- match(i + 1, Locate)
# if (Npp[Mat] == Npp[Mat - 1])
# stop("Parcels incorrectly specified.\",
# \" Check input!")
# }
# }
# ## warning message if parcel crosses into multiple factors vector, parcel to which
# ## each variable belongs vector, factor to which each variables belongs if
# ## variables are in the same parcel, but different factors error message given in
# ## output
#
# Onevec <- facPlc - round(facPlc)
# NleaveA <- length(Onevec) - sum(Onevec == 0)
# NleaveP <- sum(nPerPar == 1)
#
# if (NleaveA < NleaveP)
# warning("Single-variable parcels have been requested.\",
# \" Check input!")
#
# if (NleaveA > NleaveP)
# warning("More non-parceled variables have been", " requested than provided for in parcel",
# " vector. Check input!")
#
# if (length(names) > 1) {
# if (length(names) != length(nPerPar))
# warning("Number of parcel names provided not equal to number", " of parcels requested")
# }
#
# Data <- c(1:ncol(dataset))
# ## creates a vector of the number of indicators e.g. for three indicators, c(1, 2,
# ## 3)
# Nfactors <- max(facPlc)
# ## scalar, number of factors
# Nindicators <- length(Data)
# ## scalar, number of indicators
# Npar <- length(nPerPar)
# ## scalar, number of parcels
# Rmize <- runif(Nindicators, 1, Nindicators)
# ## create vector of randomly ordered numbers, length of number of indicators
#
# Data <- rbind(facPlc, Rmize, Data)
# ## 'Data' becomes object of three rows, consisting of 1) factor to which each
# ## indicator belongs (in order to preserve indicator/factor assignment during
# ## randomization) 2) randomly order numbers 3) indicator number
#
# Results <- matrix(numeric(0), nAlloc, Nindicators)
# ## create empty matrix for parcel allocation matrix
#
# Pin <- nPerPar[1]
# for (i in 2:length(nPerPar)) {
# Pin <- c(Pin, nPerPar[i] + Pin[i - 1])
# ## creates vector which indicates the range of columns (endpoints) in each parcel
# }
#
# for (i in 1:nAlloc) {
# Data[2, ] <- runif(Nindicators, 1, Nindicators)
# ## Replace second row with newly randomly ordered numbers
#
# Data <- Data[, order(Data[2, ])]
# ## Order the columns according to the values of the second row
#
# Data <- Data[, order(Data[1, ])]
# ## Order the columns according to the values of the first row in order to preserve
# ## factor assignment
#
# Results[i, ] <- Data[3, ]
# ## assign result to allocation matrix
# }
#
# Alpha <- rbind(Results[1, ], dataset)
# ## bind first random allocation to dataset 'Alpha'
#
# Allocations <- list()
# ## create empty list for allocation data matrices
#
# for (i in 1:nAlloc) {
# Ineff <- rep(NA, ncol(Results))
# Ineff2 <- c(1:ncol(Results))
# for (inefficient in 1:ncol(Results)) {
# Ineff[Results[i, inefficient]] <- Ineff2[inefficient]
# }
#
# Alpha[1, ] <- Ineff
# ## replace first row of dataset matrix with row 'i' from allocation matrix
#
# Beta <- Alpha[, order(Alpha[1, ])]
# ## arrangle dataset columns by values of first row assign to temporary matrix
# ## 'Beta'
#
# Temp <- matrix(NA, nrow(dataset), Npar)
# ## create empty matrix for averaged parcel variables
#
# TempAA <- if (length(1:Pin[1]) > 1)
# Beta[2:nrow(Beta), 1:Pin[1]] else cbind(Beta[2:nrow(Beta), 1:Pin[1]], Beta[2:nrow(Beta), 1:Pin[1]])
# Temp[, 1] <- rowMeans(TempAA, na.rm = TRUE)
# ## fill first column with averages from assigned indicators
# for (al in 2:Npar) {
# Plc <- Pin[al - 1] + 1
# ## placeholder variable for determining parcel width
# TempBB <- if (length(Plc:Pin[al]) > 1)
# Beta[2:nrow(Beta), Plc:Pin[al]] else cbind(Beta[2:nrow(Beta), Plc:Pin[al]], Beta[2:nrow(Beta), Plc:Pin[al]])
# Temp[, al] <- rowMeans(TempBB, na.rm = TRUE)
# ## fill remaining columns with averages from assigned indicators
# }
# if (length(names) > 1)
# colnames(Temp) <- names
# Allocations[[i]] <- Temp
# ## assign result to list of parcel datasets
# }
#
# ## Write parceled datasets
# if (as.vector(regexpr("/", parceloutput)) != -1) {
# replist <- matrix(NA, nAlloc, 1)
# for (i in 1:nAlloc) {
# ## if (is.na(names)==TRUE) names <- matrix(NA,nrow(
# colnames(Allocations[[i]]) <- names
# utils::write.table(Allocations[[i]], paste(parceloutput, "/parcelruns", i,
# ".dat", sep = ""),
# row.names = FALSE, col.names = TRUE)
# replist[i, 1] <- paste("parcelruns", i, ".dat", sep = "")
# }
# utils::write.table(replist, paste(parceloutput, "/parcelrunsreplist.dat",
# sep = ""),
# quote = FALSE, row.names = FALSE, col.names = FALSE)
# }
#
#
# ## Model A estimation
#
# {
# Param_A <- list()
# ## list for parameter estimated for each imputation
# Fitind_A <- list()
# ## list for fit indices estimated for each imputation
# Converged_A <- list()
# ## list for whether or not each allocation converged
# ProperSolution_A <- list()
# ## list for whether or not each allocation has proper solutions
# ConvergedProper_A <- list()
# ## list for whether or not each allocation converged and has proper solutions
#
# for (i in 1:nAlloc) {
# data_A <- as.data.frame(Allocations[[i]], row.names = NULL, optional = FALSE)
# ## convert allocation matrix to dataframe for model estimation
# fit_A <- lavaan::sem(syntaxA, data = data_A, ...)
# ## estimate model in lavaan
# if (lavInspect(fit_A, "converged") == TRUE) {
# Converged_A[[i]] <- 1
# } else Converged_A[[i]] <- 0
# ## determine whether or not each allocation converged
# Param_A[[i]] <- lavaan::parameterEstimates(fit_A)[, c("lhs", "op", "rhs",
# "est", "se", "z", "pvalue", "ci.lower", "ci.upper")]
# ## assign allocation parameter estimates to list
# if (lavInspect(fit_A, "post.check") == TRUE & Converged_A[[i]] == 1) {
# ProperSolution_A[[i]] <- 1
# } else ProperSolution_A[[i]] <- 0
# ## determine whether or not each allocation has proper solutions
# if (any(is.na(Param_A[[i]][, 5] == TRUE)))
# ProperSolution_A[[i]] <- 0
# ## make sure each allocation has existing SE
# if (Converged_A[[i]] == 1 & ProperSolution_A[[i]] == 1) {
# ConvergedProper_A[[i]] <- 1
# } else ConvergedProper_A[[i]] <- 0
# ## determine whether or not each allocation converged and has proper solutions
#
# if (ConvergedProper_A[[i]] == 0)
# Param_A[[i]][, 4:9] <- matrix(data = NA, nrow(Param_A[[i]]), 6)
# ## make parameter estimates null for nonconverged, improper solutions
#
# if (ConvergedProper_A[[i]] == 1) {
# Fitind_A[[i]] <- lavaan::fitMeasures(fit_A, c("chisq", "df", "cfi",
# "tli", "rmsea", "srmr", "logl", "bic", "aic"))
# } else Fitind_A[[i]] <- c(NA, NA, NA, NA, NA, NA, NA, NA, NA)
# ### assign allocation parameter estimates to list
#
# }
#
#
# nConverged_A <- Reduce("+", Converged_A)
# ## count number of converged allocations
#
# nProperSolution_A <- Reduce("+", ProperSolution_A)
# ## count number of allocations with proper solutions
#
# nConvergedProper_A <- Reduce("+", ConvergedProper_A)
# ## count number of allocations with proper solutions
#
# if (nConvergedProper_A == 0)
# stop("All allocations failed to converge and/or yielded improper solutions for Model A and/or B.")
# ## stop program if no allocations converge
#
# Parmn_A <- Param_A[[1]]
# ## assign first parameter estimates to mean dataframe
#
# ParSE_A <- matrix(NA, nrow(Parmn_A), nAlloc)
# ParSEmn_A <- Parmn_A[, 5]
#
# Parsd_A <- matrix(NA, nrow(Parmn_A), nAlloc)
# ## assign parameter estimates for S.D. calculation
#
# Fitmn_A <- Fitind_A[[1]]
# ## assign first fit indices to mean dataframe
#
# Fitsd_A <- matrix(NA, length(Fitmn_A), nAlloc)
# ## assign fit indices for S.D. calculation
#
# Sigp_A <- matrix(NA, nrow(Parmn_A), nAlloc)
# ## assign p-values to calculate percentage significant
#
# Fitind_A <- data.frame(Fitind_A)
# ### convert fit index table to data frame
#
# for (i in 1:nAlloc) {
#
# Parsd_A[, i] <- Param_A[[i]][, 4]
# ## assign parameter estimates for S.D. estimation
#
# ParSE_A[, i] <- Param_A[[i]][, 5]
#
# if (i > 1) {
# ParSEmn_A <- rowSums(cbind(ParSEmn_A, Param_A[[i]][, 5]), na.rm = TRUE)
# }
#
# Sigp_A[, ncol(Sigp_A) - i + 1] <- Param_A[[i]][, 7]
# ## assign p-values to calculate percentage significant
#
# Fitsd_A[, i] <- Fitind_A[[i]]
# ## assign fit indices for S.D. estimation
#
# if (i > 1) {
# Parmn_A[, 4:ncol(Parmn_A)] <- rowSums(cbind(Parmn_A[, 4:ncol(Parmn_A)],
# Param_A[[i]][, 4:ncol(Parmn_A)]), na.rm = TRUE)
# }
# ## add together all parameter estimates
#
# if (i > 1)
# Fitmn_A <- rowSums(cbind(Fitmn_A, Fitind_A[[i]]), na.rm = TRUE)
# ## add together all fit indices
#
# }
#
#
# Sigp_A <- Sigp_A + 0.45
# Sigp_A <- apply(Sigp_A, c(1, 2), round)
# Sigp_A <- 1 - as.vector(rowMeans(Sigp_A, na.rm = TRUE))
# ## calculate percentage significant parameters
#
# Parsum_A <- cbind(apply(Parsd_A, 1, mean, na.rm = TRUE),
# apply(Parsd_A, 1, sd, na.rm = TRUE),
# apply(Parsd_A, 1, max, na.rm = TRUE),
# apply(Parsd_A, 1, min, na.rm = TRUE),
# apply(Parsd_A, 1, max, na.rm = TRUE) - apply(Parsd_A, 1, min, na.rm = TRUE), Sigp_A * 100)
# colnames(Parsum_A) <- c("Avg Est.", "S.D.", "MAX", "MIN", "Range", "% Sig")
# ## calculate parameter S.D., minimum, maximum, range, bind to percentage
# ## significant
#
# ParSEmn_A <- Parmn_A[, 1:3]
# ParSEfn_A <- cbind(ParSEmn_A, apply(ParSE_A, 1, mean, na.rm = TRUE),
# apply(ParSE_A, 1, sd, na.rm = TRUE),
# apply(ParSE_A, 1, max, na.rm = TRUE),
# apply(ParSE_A, 1, min, na.rm = TRUE),
# apply(ParSE_A, 1, max, na.rm = TRUE) - apply(ParSE_A, 1, min, na.rm = TRUE))
# colnames(ParSEfn_A) <- c("lhs", "op", "rhs", "Avg SE", "S.D.",
# "MAX", "MIN", "Range")
#
# Fitsum_A <- cbind(apply(Fitsd_A, 1, mean, na.rm = TRUE),
# apply(Fitsd_A, 1, sd, na.rm = TRUE),
# apply(Fitsd_A, 1, max, na.rm = TRUE),
# apply(Fitsd_A, 1, min, na.rm = TRUE),
# apply(Fitsd_A, 1, max, na.rm = TRUE) - apply(Fitsd_A, 1, min, na.rm = TRUE))
# rownames(Fitsum_A) <- c("chisq", "df", "cfi", "tli", "rmsea", "srmr", "logl",
# "bic", "aic")
# ## calculate fit S.D., minimum, maximum, range
#
# Parmn_A[, 4:ncol(Parmn_A)] <- Parmn_A[, 4:ncol(Parmn_A)]/nConvergedProper_A
# ## divide totalled parameter estimates by number converged allocations
# Parmn_A <- Parmn_A[, 1:3]
# ## remove confidence intervals from output
# Parmn_A <- cbind(Parmn_A, Parsum_A)
# ## bind parameter average estimates to cross-allocation information
# Fitmn_A <- Fitmn_A/nConvergedProper_A
# ## divide totalled fit indices by number converged allocations
#
# pChisq_A <- list()
# ## create empty list for Chi-square p-values
# sigChisq_A <- list()
# ## create empty list for Chi-square significance
#
# for (i in 1:nAlloc) {
# pChisq_A[[i]] <- (1 - pchisq(Fitsd_A[1, i], Fitsd_A[2, i]))
# ## calculate p-value for each Chi-square
# if (is.na(pChisq_A[[i]]) == FALSE & pChisq_A[[i]] < 0.05) {
# sigChisq_A[[i]] <- 1
# } else sigChisq_A[[i]] <- 0
# }
# ## count number of allocations with significant chi-square
#
# PerSigChisq_A <- (Reduce("+", sigChisq_A))/nConvergedProper_A * 100
# PerSigChisq_A <- round(PerSigChisq_A, 3)
# ## calculate percent of allocations with significant chi-square
#
# PerSigChisqCol_A <- c(PerSigChisq_A, "n/a", "n/a", "n/a", "n/a", "n/a", "n/a",
# "n/a", "n/a")
# ## create list of Chi-square Percent Significant and 'n/a' (used for fit summary
# ## table)
#
# options(stringsAsFactors = FALSE)
# ## set default option to allow strings into dataframe without converting to factors
#
# Fitsum_A <- data.frame(Fitsum_A, PerSigChisqCol_A)
# colnames(Fitsum_A) <- c("Avg Ind", "S.D.", "MAX", "MIN", "Range", "% Sig")
# ### bind to fit averages
#
# options(stringsAsFactors = TRUE)
# ## unset option to allow strings into dataframe without converting to factors
#
# ParSEfn_A[, 4:8] <- apply(ParSEfn_A[, 4:8], 2, round, digits = 3)
# Parmn_A[, 4:9] <- apply(Parmn_A[, 4:9], 2, round, digits = 3)
# Fitsum_A[, 1:5] <- apply(Fitsum_A[, 1:5], 2, round, digits = 3)
# ## round output to three digits
#
# Fitsum_A[2, 2:5] <- c("n/a", "n/a", "n/a", "n/a")
# ## Change df row to 'n/a' for sd, max, min, and range
#
# Output_A <- list(Parmn_A, ParSEfn_A, Fitsum_A)
# names(Output_A) <- c("Estimates_A", "SE_A", "Fit_A")
# ## output summary for model A
#
# }
#
# ## Model B estimation
#
# {
# Param <- list()
# ## list for parameter estimated for each imputation
# Fitind <- list()
# ## list for fit indices estimated for each imputation
# Converged <- list()
# ## list for whether or not each allocation converged
# ProperSolution <- list()
# ## list for whether or not each allocation has proper solutions
# ConvergedProper <- list()
# ## list for whether or not each allocation is converged and proper
#
# for (i in 1:nAlloc) {
# data <- as.data.frame(Allocations[[i]], row.names = NULL, optional = FALSE)
# ## convert allocation matrix to dataframe for model estimation
# fit <- lavaan::sem(syntaxB, data = data, ...)
# ## estimate model in lavaan
# if (lavInspect(fit, "converged") == TRUE) {
# Converged[[i]] <- 1
# } else Converged[[i]] <- 0
# ## determine whether or not each allocation converged
# Param[[i]] <- lavaan::parameterEstimates(fit)[, c("lhs", "op", "rhs",
# "est", "se", "z", "pvalue", "ci.lower", "ci.upper")]
# ## assign allocation parameter estimates to list
# if (lavInspect(fit, "post.check") == TRUE & Converged[[i]] == 1) {
# ProperSolution[[i]] <- 1
# } else ProperSolution[[i]] <- 0
# ## determine whether or not each allocation has proper solutions
# if (any(is.na(Param[[i]][, 5] == TRUE)))
# ProperSolution[[i]] <- 0
# ## make sure each allocation has existing SE
# if (Converged[[i]] == 1 & ProperSolution[[i]] == 1) {
# ConvergedProper[[i]] <- 1
# } else ConvergedProper[[i]] <- 0
# ## determine whether or not each allocation converged and has proper solutions
#
# if (ConvergedProper[[i]] == 0)
# Param[[i]] <- matrix(data = NA, nrow(Param[[i]]), ncol(Param[[i]]))
# ## make parameter estimates null for nonconverged, improper solutions
#
# if (ConvergedProper[[i]] == 1) {
# Fitind[[i]] <- lavaan::fitMeasures(fit, c("chisq", "df", "cfi", "tli",
# "rmsea", "srmr", "logl", "bic", "aic"))
# } else Fitind[[i]] <- c(NA, NA, NA, NA, NA, NA, NA, NA, NA)
# ### assign allocation parameter estimates to list
#
#
# }
#
#
#
#
# nConverged <- Reduce("+", Converged)
# ## count number of converged allocations
#
# nProperSolution <- Reduce("+", ProperSolution)
# ## count number of allocations with proper solutions
#
# nConvergedProper <- Reduce("+", ConvergedProper)
# ## count number of allocations with proper solutions
#
# if (nConvergedProper == 0)
# stop("All allocations failed to converge", " and/or yielded improper solutions for",
# " Model A and/or B.")
# ## stop program if no allocations converge
#
# Parmn <- Param[[1]]
# ## assign first parameter estimates to mean dataframe
#
# ParSE <- matrix(NA, nrow(Parmn), nAlloc)
# ParSEmn <- Parmn[, 5]
#
# Parsd <- matrix(NA, nrow(Parmn), nAlloc)
# ## assign parameter estimates for S.D. calculation
#
# Fitmn <- Fitind[[1]]
# ## assign first fit indices to mean dataframe
#
# Fitsd <- matrix(NA, length(Fitmn), nAlloc)
# ## assign fit indices for S.D. calculation
#
# Sigp <- matrix(NA, nrow(Parmn), nAlloc)
# ## assign p-values to calculate percentage significant
#
# Fitind <- data.frame(Fitind)
# ### convert fit index table to dataframe
#
#
# for (i in 1:nAlloc) {
#
# Parsd[, i] <- Param[[i]][, 4]
# ## assign parameter estimates for S.D. estimation
#
# ParSE[, i] <- Param[[i]][, 5]
#
# if (i > 1)
# ParSEmn <- rowSums(cbind(ParSEmn, Param[[i]][, 5]), na.rm = TRUE)
#
# Sigp[, ncol(Sigp) - i + 1] <- Param[[i]][, 7]
# ## assign p-values to calculate percentage significant
#
#
# Fitsd[, i] <- Fitind[[i]]
# ## assign fit indices for S.D. estimation
#
# if (i > 1) {
# Parmn[, 4:ncol(Parmn)] <- rowSums(cbind(Parmn[, 4:ncol(Parmn)], Param[[i]][,
# 4:ncol(Parmn)]), na.rm = TRUE)
# }
# ## add together all parameter estimates
#
# if (i > 1)
# Fitmn <- rowSums(cbind(Fitmn, Fitind[[i]]), na.rm = TRUE)
# ## add together all fit indices
#
# }
#
#
# Sigp <- Sigp + 0.45
# Sigp <- apply(Sigp, c(1, 2), round)
# Sigp <- 1 - as.vector(rowMeans(Sigp, na.rm = TRUE))
# ## calculate percentage significant parameters
#
# Parsum <- cbind(apply(Parsd, 1, mean, na.rm = TRUE), apply(Parsd, 1, sd, na.rm = TRUE),
# apply(Parsd, 1, max, na.rm = TRUE), apply(Parsd, 1, min, na.rm = TRUE),
# apply(Parsd, 1, max, na.rm = TRUE) - apply(Parsd, 1, min, na.rm = TRUE),
# Sigp * 100)
# colnames(Parsum) <- c("Avg Est", "S.D.", "MAX", "MIN", "Range", "% Sig")
# ## calculate parameter S.D., minimum, maximum, range, bind to percentage
# ## significant
#
# ParSEmn <- Parmn[, 1:3]
# ParSEfn <- cbind(ParSEmn, apply(ParSE, 1, mean, na.rm = TRUE), apply(ParSE,
# 1, sd, na.rm = TRUE), apply(ParSE, 1, max, na.rm = TRUE), apply(ParSE,
# 1, min, na.rm = TRUE), apply(ParSE, 1, max, na.rm = TRUE) - apply(ParSE,
# 1, min, na.rm = TRUE))
# colnames(ParSEfn) <- c("lhs", "op", "rhs", "Avg SE", "S.D.", "MAX", "MIN",
# "Range")
#
# Fitsum <- cbind(apply(Fitsd, 1, mean, na.rm = TRUE), apply(Fitsd, 1, sd, na.rm = TRUE),
# apply(Fitsd, 1, max, na.rm = TRUE), apply(Fitsd, 1, min, na.rm = TRUE),
# apply(Fitsd, 1, max, na.rm = TRUE) - apply(Fitsd, 1, min, na.rm = TRUE))
# rownames(Fitsum) <- c("chisq", "df", "cfi", "tli", "rmsea", "srmr", "logl",
# "bic", "aic")
# ## calculate fit S.D., minimum, maximum, range
#
# Parmn[, 4:ncol(Parmn)] <- Parmn[, 4:ncol(Parmn)]/nConvergedProper
# ## divide totalled parameter estimates by number converged allocations
# Parmn <- Parmn[, 1:3]
# ## remove confidence intervals from output
# Parmn <- cbind(Parmn, Parsum)
# ## bind parameter average estimates to cross-allocation information
# Fitmn <- as.numeric(Fitmn)
# ## make fit index values numeric
# Fitmn <- Fitmn/nConvergedProper
# ## divide totalled fit indices by number converged allocations
#
# pChisq <- list()
# ## create empty list for Chi-square p-values
# sigChisq <- list()
# ## create empty list for Chi-square significance
#
# for (i in 1:nAlloc) {
#
# pChisq[[i]] <- (1 - pchisq(Fitsd[1, i], Fitsd[2, i]))
# ## calculate p-value for each Chi-square
#
# if (is.na(pChisq[[i]]) == FALSE & pChisq[[i]] < 0.05) {
# sigChisq[[i]] <- 1
# } else sigChisq[[i]] <- 0
# }
# ## count number of allocations with significant chi-square
#
# PerSigChisq <- (Reduce("+", sigChisq))/nConvergedProper * 100
# PerSigChisq <- round(PerSigChisq, 3)
# ## calculate percent of allocations with significant chi-square
#
# PerSigChisqCol <- c(PerSigChisq, "n/a", "n/a", "n/a", "n/a", "n/a", "n/a",
# "n/a", "n/a")
# ## create list of Chi-square Percent Significant and 'n/a' (used for fit summary
# ## table)
#
# options(stringsAsFactors = FALSE)
# ## set default option to allow strings into dataframe without converting to factors
#
# Fitsum <- data.frame(Fitsum, PerSigChisqCol)
# colnames(Fitsum) <- c("Avg Ind", "S.D.", "MAX", "MIN", "Range", "% Sig")
# ### bind to fit averages
#
# options(stringsAsFactors = TRUE)
# ## unset option to allow strings into dataframe without converting to factors
#
# ParSEfn[, 4:8] <- apply(ParSEfn[, 4:8], 2, round, digits = 3)
# Parmn[, 4:9] <- apply(Parmn[, 4:9], 2, round, digits = 3)
# Fitsum[, 1:5] <- apply(Fitsum[, 1:5], 2, round, digits = 3)
# ## round output to three digits
#
# Fitsum[2, 2:5] <- c("n/a", "n/a", "n/a", "n/a")
# ## Change df row to 'n/a' for sd, max, min, and range
#
# Output_B <- list(Parmn, ParSEfn, Fitsum)
# names(Output_B) <- c("Estimates_B", "SE_B", "Fit_B")
# ## output summary for model A
#
# }
#
# ## Model Comparison (everything in this section is new)
#
# {
# Converged_AB <- list()
# ## create list of convergence comparison for each allocation
# ProperSolution_AB <- list()
# ## create list of proper solution comparison for each allocation
# ConvergedProper_AB <- list()
# ## create list of convergence and proper solution comparison for each allocation
# lrtest_AB <- list()
# ## create list for likelihood ratio test for each allocation
# lrchisq_AB <- list()
# ## create list for likelihood ratio chi square value
# lrchisqp_AB <- list()
# ## create list for likelihood ratio test p-value
# lrsig_AB <- list()
# ## create list for likelihood ratio test significance
#
# for (i in 1:nAlloc) {
# if (Converged_A[[i]] == 1 & Converged[[i]] == 1) {
# Converged_AB[[i]] <- 1
# } else Converged_AB[[i]] <- 0
# ## compare convergence
#
# if (ProperSolution_A[[i]] == 1 & ProperSolution[[i]] == 1) {
# ProperSolution_AB[[i]] <- 1
# } else ProperSolution_AB[[i]] <- 0
# ## compare existence of proper solutions
#
# if (ConvergedProper_A[[i]] == 1 & ConvergedProper[[i]] == 1) {
# ConvergedProper_AB[[i]] <- 1
# } else ConvergedProper_AB[[i]] <- 0
# ## compare existence of proper solutions and convergence
#
#
#
# if (ConvergedProper_AB[[i]] == 1) {
#
# data <- as.data.frame(Allocations[[i]], row.names = NULL, optional = FALSE)
# ## convert allocation matrix to dataframe for model estimation
# fit_A <- lavaan::sem(syntaxA, data = data, ...)
# ## estimate model A in lavaan
# fit <- lavaan::sem(syntaxB, data = data, ...)
# ## estimate model B in lavaan
# lrtest_AB[[i]] <- lavaan::lavTestLRT(fit_A, fit)
# ## likelihood ratio test comparing A and B
# lrtestd_AB <- as.data.frame(lrtest_AB[[i]], row.names = NULL, optional = FALSE)
# ## convert lrtest results to dataframe
# lrchisq_AB[[i]] <- lrtestd_AB[2, 5]
# ## write lrtest chisq as single numeric variable
# lrchisqp_AB[[i]] <- lrtestd_AB[2, 7]
# ## write lrtest p-value as single numeric variable
# if (lrchisqp_AB[[i]] < 0.05) {
# lrsig_AB[[i]] <- 1
# } else {
# lrsig_AB[[i]] <- 0
# }
# ## determine statistical significance of lrtest
#
# }
# }
#
# lrchisqp_AB <- unlist(lrchisqp_AB, recursive = TRUE, use.names = TRUE)
# ## convert lrchisqp_AB from list to vector
# lrchisqp_AB <- as.numeric(lrchisqp_AB)
# ## make lrchisqp_AB numeric
# lrsig_AB <- unlist(lrsig_AB, recursive = TRUE, use.names = TRUE)
# ## convert lrsig_AB from list to vector
# lrsig_AB <- as.numeric(lrsig_AB)
# ### make lrsig_AB numeric
#
#
# nConverged_AB <- Reduce("+", Converged_AB)
# ## count number of allocations that converged for both A and B
# nProperSolution_AB <- Reduce("+", ProperSolution_AB)
# ## count number of allocations with proper solutions for both A and B
# nConvergedProper_AB <- Reduce("+", ConvergedProper_AB)
# ## count number of allocations that converged and have proper solutions for both A
# ## and B
# ProConverged_AB <- (nConverged_AB/nAlloc) * 100
# ## calc proportion of allocations that converged for both A and B
# nlrsig_AB <- Reduce("+", lrsig_AB)
# ## count number of allocations with significant lrtest between A and B
# Prolrsig_AB <- (nlrsig_AB/nConvergedProper_AB) * 100
# ## calc proportion of allocations with significant lrtest between A and B
# lrchisq_AB <- unlist(lrchisq_AB, recursive = TRUE, use.names = TRUE)
# ### convert lrchisq_AB from list to vector
# lrchisq_AB <- as.numeric(lrchisq_AB)
# ### make lrchisq_AB numeric
# AvgLRT_AB <- (Reduce("+", lrchisq_AB))/nConvergedProper_AB
# ## calc average LRT
#
# LRTsum <- cbind(AvgLRT_AB, lrtestd_AB[2, 3], sd(lrchisq_AB, na.rm = TRUE),
# max(lrchisq_AB), min(lrchisq_AB),
# max(lrchisq_AB) - min(lrchisq_AB), Prolrsig_AB)
# colnames(LRTsum) <- c("Avg LRT", "df", "S.D.", "MAX", "MIN", "Range", "% Sig")
# ## calculate LRT distribution statistics
#
# FitDiff_AB <- Fitsd_A - Fitsd
# ## compute fit index difference matrix
#
# for (i in 1:nAlloc) {
# if (ConvergedProper_AB[[i]] != 1)
# FitDiff_AB[1:9, i] <- 0
# }
# ### make fit differences zero for each non-converged allocation
#
# BICDiff_AB <- list()
# AICDiff_AB <- list()
# RMSEADiff_AB <- list()
# CFIDiff_AB <- list()
# TLIDiff_AB <- list()
# SRMRDiff_AB <- list()
# BICDiffGT10_AB <- list()
# ## create list noting each allocation in which A is preferred over B
#
# BICDiff_BA <- list()
# AICDiff_BA <- list()
# RMSEADiff_BA <- list()
# CFIDiff_BA <- list()
# TLIDiff_BA <- list()
# SRMRDiff_BA <- list()
# BICDiffGT10_BA <- list()
# ## create list noting each allocation in which B is preferred over A
#
# for (i in 1:nAlloc) {
# if (FitDiff_AB[8, i] < 0) {
# BICDiff_AB[[i]] <- 1
# } else BICDiff_AB[[i]] <- 0
# if (FitDiff_AB[9, i] < 0) {
# AICDiff_AB[[i]] <- 1
# } else AICDiff_AB[[i]] <- 0
# if (FitDiff_AB[5, i] < 0) {
# RMSEADiff_AB[[i]] <- 1
# } else RMSEADiff_AB[[i]] <- 0
# if (FitDiff_AB[3, i] > 0) {
# CFIDiff_AB[[i]] <- 1
# } else CFIDiff_AB[[i]] <- 0
# if (FitDiff_AB[4, i] > 0) {
# TLIDiff_AB[[i]] <- 1
# } else TLIDiff_AB[[i]] <- 0
# if (FitDiff_AB[6, i] < 0) {
# SRMRDiff_AB[[i]] <- 1
# } else SRMRDiff_AB[[i]] <- 0
# if (FitDiff_AB[8, i] < (-10)) {
# BICDiffGT10_AB[[i]] <- 1
# } else BICDiffGT10_AB[[i]] <- 0
# }
# nBIC_AoverB <- Reduce("+", BICDiff_AB)
# nAIC_AoverB <- Reduce("+", AICDiff_AB)
# nRMSEA_AoverB <- Reduce("+", RMSEADiff_AB)
# nCFI_AoverB <- Reduce("+", CFIDiff_AB)
# nTLI_AoverB <- Reduce("+", TLIDiff_AB)
# nSRMR_AoverB <- Reduce("+", SRMRDiff_AB)
# nBICDiffGT10_AoverB <- Reduce("+", BICDiffGT10_AB)
# ## compute number of 'A preferred over B' for each fit index
#
# for (i in 1:nAlloc) {
# if (FitDiff_AB[8, i] > 0) {
# BICDiff_BA[[i]] <- 1
# } else BICDiff_BA[[i]] <- 0
# if (FitDiff_AB[9, i] > 0) {
# AICDiff_BA[[i]] <- 1
# } else AICDiff_BA[[i]] <- 0
# if (FitDiff_AB[5, i] > 0) {
# RMSEADiff_BA[[i]] <- 1
# } else RMSEADiff_BA[[i]] <- 0
# if (FitDiff_AB[3, i] < 0) {
# CFIDiff_BA[[i]] <- 1
# } else CFIDiff_BA[[i]] <- 0
# if (FitDiff_AB[4, i] < 0) {
# TLIDiff_BA[[i]] <- 1
# } else TLIDiff_BA[[i]] <- 0
# if (FitDiff_AB[6, i] > 0) {
# SRMRDiff_BA[[i]] <- 1
# } else SRMRDiff_BA[[i]] <- 0
# if (FitDiff_AB[8, i] > (10)) {
# BICDiffGT10_BA[[i]] <- 1
# } else BICDiffGT10_BA[[i]] <- 0
# }
# nBIC_BoverA <- Reduce("+", BICDiff_BA)
# nAIC_BoverA <- Reduce("+", AICDiff_BA)
# nRMSEA_BoverA <- Reduce("+", RMSEADiff_BA)
# nCFI_BoverA <- Reduce("+", CFIDiff_BA)
# nTLI_BoverA <- Reduce("+", TLIDiff_BA)
# nSRMR_BoverA <- Reduce("+", SRMRDiff_BA)
# nBICDiffGT10_BoverA <- Reduce("+", BICDiffGT10_BA)
# ## compute number of 'B preferred over A' for each fit index
#
# BICDiffAvgtemp <- list()
# AICDiffAvgtemp <- list()
# RMSEADiffAvgtemp <- list()
# CFIDiffAvgtemp <- list()
# TLIDiffAvgtemp <- list()
# SRMRDiffAvgtemp <- list()
# BICgt10DiffAvgtemp <- list()
# ## create empty list for average fit index differences
#
# for (i in 1:nAlloc) {
# if (BICDiff_AB[[i]] != 1) {
# BICDiffAvgtemp[[i]] <- 0
# } else BICDiffAvgtemp[[i]] <- FitDiff_AB[8, i]
# if (AICDiff_AB[[i]] != 1) {
# AICDiffAvgtemp[[i]] <- 0
# } else AICDiffAvgtemp[[i]] <- FitDiff_AB[9, i]
# if (RMSEADiff_AB[[i]] != 1) {
# RMSEADiffAvgtemp[[i]] <- 0
# } else RMSEADiffAvgtemp[[i]] <- FitDiff_AB[5, i]
# if (CFIDiff_AB[[i]] != 1) {
# CFIDiffAvgtemp[[i]] <- 0
# } else CFIDiffAvgtemp[[i]] <- FitDiff_AB[3, i]
# if (TLIDiff_AB[[i]] != 1) {
# TLIDiffAvgtemp[[i]] <- 0
# } else TLIDiffAvgtemp[[i]] <- FitDiff_AB[4, i]
# if (SRMRDiff_AB[[i]] != 1) {
# SRMRDiffAvgtemp[[i]] <- 0
# } else SRMRDiffAvgtemp[[i]] <- FitDiff_AB[6, i]
# if (BICDiffGT10_AB[[i]] != 1) {
# BICgt10DiffAvgtemp[[i]] <- 0
# } else BICgt10DiffAvgtemp[[i]] <- FitDiff_AB[8, i]
# }
# ## make average fit index difference list composed solely of values where A is
# ## preferred over B
#
# BICDiffAvg_AB <- Reduce("+", BICDiffAvgtemp)/nBIC_AoverB * (-1)
# AICDiffAvg_AB <- Reduce("+", AICDiffAvgtemp)/nAIC_AoverB * (-1)
# RMSEADiffAvg_AB <- Reduce("+", RMSEADiffAvgtemp)/nRMSEA_AoverB * (-1)
# CFIDiffAvg_AB <- Reduce("+", CFIDiffAvgtemp)/nCFI_AoverB
# TLIDiffAvg_AB <- Reduce("+", TLIDiffAvgtemp)/nTLI_AoverB
# SRMRDiffAvg_AB <- Reduce("+", SRMRDiffAvgtemp)/nSRMR_AoverB * (-1)
# BICgt10DiffAvg_AB <- Reduce("+", BICgt10DiffAvgtemp)/nBICDiffGT10_AoverB *
# (-1)
# ## calc average fit index difference when A is preferred over B
#
# FitDiffAvg_AoverB <- list(BICDiffAvg_AB, AICDiffAvg_AB, RMSEADiffAvg_AB, CFIDiffAvg_AB,
# TLIDiffAvg_AB, SRMRDiffAvg_AB)
# ## create list of all fit index differences when A is preferred over B
#
# FitDiffAvg_AoverB <- unlist(FitDiffAvg_AoverB, recursive = TRUE, use.names = TRUE)
# ### convert from list to vector
#
# for (i in 1:nAlloc) {
# if (BICDiff_BA[[i]] != 1) {
# BICDiffAvgtemp[[i]] <- 0
# } else BICDiffAvgtemp[[i]] <- FitDiff_AB[8, i]
# if (AICDiff_BA[[i]] != 1) {
# AICDiffAvgtemp[[i]] <- 0
# } else AICDiffAvgtemp[[i]] <- FitDiff_AB[9, i]
# if (RMSEADiff_BA[[i]] != 1) {
# RMSEADiffAvgtemp[[i]] <- 0
# } else RMSEADiffAvgtemp[[i]] <- FitDiff_AB[5, i]
# if (CFIDiff_BA[[i]] != 1) {
# CFIDiffAvgtemp[[i]] <- 0
# } else CFIDiffAvgtemp[[i]] <- FitDiff_AB[3, i]
# if (TLIDiff_BA[[i]] != 1) {
# TLIDiffAvgtemp[[i]] <- 0
# } else TLIDiffAvgtemp[[i]] <- FitDiff_AB[4, i]
# if (SRMRDiff_BA[[i]] != 1) {
# SRMRDiffAvgtemp[[i]] <- 0
# } else SRMRDiffAvgtemp[[i]] <- FitDiff_AB[6, i]
# if (BICDiffGT10_BA[[i]] != 1) {
# BICgt10DiffAvgtemp[[i]] <- 0
# } else BICgt10DiffAvgtemp[[i]] <- FitDiff_AB[8, i]
# }
# ## make average fit index difference list composed solely of values where B is
# ## preferred over A
#
# BICDiffAvg_BA <- Reduce("+", BICDiffAvgtemp)/nBIC_BoverA
# AICDiffAvg_BA <- Reduce("+", AICDiffAvgtemp)/nAIC_BoverA
# RMSEADiffAvg_BA <- Reduce("+", RMSEADiffAvgtemp)/nRMSEA_BoverA
# CFIDiffAvg_BA <- Reduce("+", CFIDiffAvgtemp)/nCFI_BoverA * (-1)
# TLIDiffAvg_BA <- Reduce("+", TLIDiffAvgtemp)/nTLI_BoverA * (-1)
# SRMRDiffAvg_BA <- Reduce("+", SRMRDiffAvgtemp)/nSRMR_BoverA
# BICgt10DiffAvg_BA <- Reduce("+", BICgt10DiffAvgtemp)/nBICDiffGT10_BoverA
# ## calc average fit index difference when B is preferred over A
#
# FitDiffAvg_BoverA <- list(BICDiffAvg_BA, AICDiffAvg_BA, RMSEADiffAvg_BA, CFIDiffAvg_BA,
# TLIDiffAvg_BA, SRMRDiffAvg_BA)
# ## create list of all fit index differences when B is preferred over A
#
# FitDiffAvg_BoverA <- unlist(FitDiffAvg_BoverA, recursive = TRUE, use.names = TRUE)
# ### convert from list to vector
#
# FitDiffBICgt10_AoverB <- nBICDiffGT10_AoverB/nConvergedProper_AB * 100
# ### calculate portion of allocations where A strongly preferred over B
#
# FitDiffBICgt10_BoverA <- nBICDiffGT10_BoverA/nConvergedProper_AB * 100
# ### calculate portion of allocations where B strongly preferred over A
#
# FitDiffBICgt10 <- rbind(FitDiffBICgt10_AoverB, FitDiffBICgt10_BoverA)
# rownames(FitDiffBICgt10) <- c("Very Strong evidence for A>B", "Very Strong evidence for B>A")
# colnames(FitDiffBICgt10) <- "% Allocations"
# ### create table of proportions of 'A strongly preferred over B' and 'B strongly
# ### preferred over A'
#
# FitDiff_AoverB <- list(nBIC_AoverB/nConvergedProper_AB * 100, nAIC_AoverB/nConvergedProper_AB *
# 100, nRMSEA_AoverB/nConvergedProper_AB * 100, nCFI_AoverB/nConvergedProper_AB *
# 100, nTLI_AoverB/nConvergedProper_AB * 100, nSRMR_AoverB/nConvergedProper_AB *
# 100)
# ### create list of all proportions of 'A preferred over B'
# FitDiff_BoverA <- list(nBIC_BoverA/nConvergedProper_AB * 100, nAIC_BoverA/nConvergedProper_AB *
# 100, nRMSEA_BoverA/nConvergedProper_AB * 100, nCFI_BoverA/nConvergedProper_AB *
# 100, nTLI_BoverA/nConvergedProper_AB * 100, nSRMR_BoverA/nConvergedProper_AB *
# 100)
# ### create list of all proportions of 'B preferred over A'
#
# FitDiff_AoverB <- unlist(FitDiff_AoverB, recursive = TRUE, use.names = TRUE)
# ### convert from list to vector
#
# FitDiff_BoverA <- unlist(FitDiff_BoverA, recursive = TRUE, use.names = TRUE)
# ### convert from list to vector
#
# FitDiffSum_AB <- cbind(FitDiff_AoverB, FitDiffAvg_AoverB, FitDiff_BoverA,
# FitDiffAvg_BoverA)
# colnames(FitDiffSum_AB) <- c("% A>B", "Avg Amount A>B", "% B>A", "Avg Amount B>A")
# rownames(FitDiffSum_AB) <- c("bic", "aic", "rmsea", "cfi", "tli", "srmr")
# ## create table showing number of allocations in which A>B and B>A as well as
# ## average difference values
#
# for (i in 1:nAlloc) {
# is.na(FitDiff_AB[1:9, i]) <- ConvergedProper_AB[[i]] != 1
# }
# ### make fit differences missing for each non-converged allocation
#
# LRThistMax <- max(hist(lrchisqp_AB, plot = FALSE)$counts)
# BIChistMax <- max(hist(FitDiff_AB[8, 1:nAlloc], plot = FALSE)$counts)
# AIChistMax <- max(hist(FitDiff_AB[9, 1:nAlloc], plot = FALSE)$counts)
# RMSEAhistMax <- max(hist(FitDiff_AB[5, 1:nAlloc], plot = FALSE)$counts)
# CFIhistMax <- max(hist(FitDiff_AB[3, 1:nAlloc], plot = FALSE)$counts)
# TLIhistMax <- max(hist(FitDiff_AB[4, 1:nAlloc], plot = FALSE)$counts)
# ### calculate y-axis height for each histogram
#
# LRThist <- hist(lrchisqp_AB, ylim = c(0, LRThistMax), xlab = "p-value", main = "LRT p-values")
# ## plot histogram of LRT p-values
#
# BIChist <- hist(FitDiff_AB[8, 1:nAlloc], ylim = c(0, BIChistMax), xlab = "BIC_modA - BIC_modB",
# main = "BIC Diff")
# AIChist <- hist(FitDiff_AB[9, 1:nAlloc], ylim = c(0, AIChistMax), xlab = "AIC_modA - AIC_modB",
# main = "AIC Diff")
# RMSEAhist <- hist(FitDiff_AB[5, 1:nAlloc], ylim = c(0, RMSEAhistMax), xlab = "RMSEA_modA - RMSEA_modB",
# main = "RMSEA Diff")
# CFIhist <- hist(FitDiff_AB[3, 1:nAlloc], ylim = c(0, CFIhistMax), xlab = "CFI_modA - CFI_modB",
# main = "CFI Diff")
# TLIhist <- hist(FitDiff_AB[4, 1:nAlloc], ylim = c(0, TLIhistMax), xlab = "TLI_modA - TLI_modB",
# main = "TLI Diff")
# ### plot histograms for each index_modA - index_modB
# BIChist
# AIChist
# RMSEAhist
# CFIhist
# TLIhist
#
# ConvergedProperSum <- rbind(nConverged_A/nAlloc, nConverged/nAlloc, nConverged_AB/nAlloc,
# nConvergedProper_A/nAlloc, nConvergedProper/nAlloc, nConvergedProper_AB/nAlloc)
# rownames(ConvergedProperSum) <- c("Converged_A", "Converged_B", "Converged_AB",
# "ConvergedProper_A", "ConvergedProper_B", "ConvergedProper_AB")
# colnames(ConvergedProperSum) <- "Proportion of Allocations"
# ### create table summarizing proportions of converged allocations and allocations
# ### with proper solutions
#
# Output_AB <- list(round(LRTsum, 3), "LRT results are interpretable specifically for nested models",
# round(FitDiffSum_AB, 3), round(FitDiffBICgt10, 3), ConvergedProperSum)
# names(Output_AB) <- c("LRT Summary, Model A vs. Model B", "Note:", "Fit Index Differences",
# "Percent of Allocations with |BIC Diff| > 10", "Converged and Proper Solutions Summary")
# ### output for model comparison
#
# }
#
# return(list(Output_A, Output_B, Output_AB))
# ## returns output for model A, model B, and the comparison of these
# }
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.