Nothing
### Title: Compute more fit indices
### Authors: Terrence D. Jorgensen, Sunthud Pornprasertmanit,
### Aaron Boulton, Ruben Arslan
### Last updated: 18 September 2021
### Description: Calculations for promising alternative fit indices
##' Calculate more fit indices
##'
##' Calculate more fit indices that are not already provided in lavaan.
##'
##' See \code{\link{nullRMSEA}} for the further details of the computation of
##' RMSEA of the null model.
##'
##' Gamma-Hat (\code{gammaHat}; West, Taylor, & Wu, 2012) is a global
##' goodness-of-fit index which can be computed (assuming equal number of
##' indicators across groups) by
##'
##' \deqn{ \hat{\Gamma} =\frac{p}{p + 2 \times \frac{\chi^{2}_{k} - df_{k}}{N}},}
##'
##' where \eqn{p} is the number of variables in the model, \eqn{\chi^{2}_{k}} is
##' the \eqn{\chi^2} test statistic value of the target model, \eqn{df_{k}} is
##' the degree of freedom when fitting the target model, and \eqn{N} is the
##' sample size (or sample size minus the number of groups if \code{mimic} is
##' set to \code{"EQS"}).
##'
##' Adjusted Gamma-Hat (\code{adjGammaHat}; West, Taylor, & Wu, 2012) is a
##' global fit index which can be computed by
##'
##' \deqn{ \hat{\Gamma}_\textrm{adj} = \left(1 - \frac{K \times p \times
##' (p + 1)}{2 \times df_{k}} \right) \times \left( 1 - \hat{\Gamma} \right),}
##'
##' where \eqn{K} is the number of groups (please refer to Dudgeon, 2004, for
##' the multiple-group adjustment for \code{adjGammaHat}).
##'
##' The remaining indices are information criteria calculated using the
##' \code{object}'s \eqn{-2 \times} log-likelihood, abbreviated \eqn{-2LL}.
##'
##' Corrected Akaike Information Criterion (\code{aic.smallN}; Burnham &
##' Anderson, 2003) is a corrected version of AIC for small sample size, often
##' abbreviated AICc:
##'
##' \deqn{ \textrm{AIC}_{\textrm{small}-N} = AIC + \frac{2q(q + 1)}{N - q - 1},}
##'
##' where \eqn{AIC} is the original AIC: \eqn{-2LL + 2q} (where \eqn{q}
##' = the number of estimated parameters in the target model). Note that AICc is
##' a small-sample correction derived for univariate regression models, so it is
##' probably \emph{not} appropriate for comparing SEMs.
##'
##' Corrected Bayesian Information Criterion (\code{bic.priorN}; Kuha, 2004) is
##' similar to BIC but explicitly specifying the sample size on which the prior
##' is based (\eqn{N_{prior}}) using the \code{nPrior} argument.
##'
##' \deqn{ \textrm{BIC}_{\textrm{prior}-N} = -2LL + q\log{( 1 + \frac{N}{N_{prior}} )}.}
##'
##' Bollen et al. (2014) discussed additional BICs that incorporate more terms
##' from a Taylor series expansion, which the standard BIC drops. The "Scaled
##' Unit-Information Prior" BIC is calculated depending on whether the product
##' of the vector of estimated model parameters (\eqn{\hat{\theta}}) and the
##' observed information matrix (FIM) exceeds the number of estimated model
##' parameters (Case 1) or not (Case 2), which is checked internally:
##'
##' \deqn{ \textrm{SPBIC}_{\textrm{Case 1}} = -2LL + q(1 - \frac{q}{\hat{\theta}^{'} \textrm{FIM} \hat{\theta}}), or}
##' \deqn{ \textrm{SPBIC}_{\textrm{Case 2}} = -2LL + \hat{\theta}^{'} \textrm{FIM} \hat{\theta},}
##'
##' Bollen et al. (2014) credit the HBIC to Haughton (1988):
##'
##' \deqn{ \textrm{HBIC}_{\textrm{Case 1}} = -2LL - q\log{2 \times \pi},}
##'
##' and proposes the information-matrix-based BIC by adding another term:
##'
##' \deqn{ \textrm{IBIC}_{\textrm{Case 1}} = -2LL - q\log{2 \times \pi} - \log{\det{\textrm{ACOV}}},}
##'
##' Stochastic information criterion (SIC; see Preacher, 2006, for details) is
##' similar to IBIC but does not subtract the term \eqn{q\log{2 \times \pi}}
##' that is also in HBIC. SIC and IBIC account for model complexity in a model's
##' functional form, not merely the number of free parameters. The SIC can be
##' computed by
##'
##' \deqn{ \textrm{SIC} = -2LL + \log{\det{\textrm{FIM}^{-1}}} = -2LL - \log{\det{\textrm{ACOV}}},}
##'
##' where the inverse of FIM is the asymptotic sampling covariance matrix (ACOV).
##'
##' Hannan--Quinn Information Criterion (HQC; Hannan & Quinn, 1979) is used for
##' model selection, similar to AIC or BIC.
##'
##' \deqn{ \textrm{HQC} = -2LL + 2k\log{(\log{N})},}
##'
##' Note that if Satorra--Bentler's or Yuan--Bentler's method is used, the fit
##' indices using the scaled \eqn{\chi^2} values are also provided.
##'
##'
##' @importFrom lavaan lavInspect
##'
##' @param object The lavaan model object provided after running the \code{cfa},
##' \code{sem}, \code{growth}, or \code{lavaan} functions.
##' @param fit.measures Additional fit measures to be calculated. All additional
##' fit measures are calculated by default
##' @param nPrior The sample size on which prior is based. This argument is used
##' to compute \code{bic.priorN}.
##'
##' @return A \code{numeric} \code{lavaan.vector} including any of the
##' following requested via \code{fit.measures=}
##' \enumerate{
##' \item \code{gammaHat}: Gamma-Hat
##' \item \code{adjGammaHat}: Adjusted Gamma-Hat
##' \item \code{baseline.rmsea}: RMSEA of the default baseline (i.e., independence) model
##' \item \code{gammaHat.scaled}: Gamma-Hat using scaled \eqn{\chi^2}
##' \item \code{adjGammaHat.scaled}: Adjusted Gamma-Hat using scaled \eqn{\chi^2}
##' \item \code{baseline.rmsea.scaled}: RMSEA of the default baseline (i.e.,
##' independence) model using scaled \eqn{\chi^2}
##' \item \code{aic.smallN}: Corrected (for small sample size) AIC
##' \item \code{bic.priorN}: BIC with specified prior sample size
##' \item \code{spbic}: Scaled Unit-Information Prior BIC (SPBIC)
##' \item \code{hbic}: Haughton's BIC (HBIC)
##' \item \code{ibic}: Information-matrix-based BIC (IBIC)
##' \item \code{sic}: Stochastic Information Criterion (SIC)
##' \item \code{hqc}: Hannan-Quinn Information Criterion (HQC)
##' }
##'
##' @author Sunthud Pornprasertmanit (\email{psunthud@@gmail.com})
##'
##' Terrence D. Jorgensen (University of Amsterdam; \email{TJorgensen314@@gmail.com})
##'
##' Aaron Boulton (University of Delaware)
##'
##' Ruben Arslan (Humboldt-University of Berlin, \email{rubenarslan@@gmail.com})
##'
##' Yves Rosseel (Ghent University; \email{Yves.Rosseel@@UGent.be})
##'
##' @seealso
##' \itemize{
##' \item \code{\link{miPowerFit}} For the modification indices and their
##' power approach for model fit evaluation
##' \item \code{\link{nullRMSEA}} For RMSEA of the default independence model
##' }
##'
##' @references
##'
##' Bollen, K. A., Ray, S., Zavisca, J., & Harden, J. J. (2012). A comparison of
##' Bayes factor approximation methods including two new methods.
##' \emph{Sociological Methods & Research, 41}(2), 294--324.
##' \doi{10.1177/0049124112452393}
##'
##' Burnham, K., & Anderson, D. (2003). \emph{Model selection and
##' multimodel inference: A practical--theoretic approach}. New York, NY:
##' Springer--Verlag.
##'
##' Dudgeon, P. (2004). A note on extending Steiger's (1998) multiple sample
##' RMSEA adjustment to other noncentrality parameter-based statistic.
##' \emph{Structural Equation Modeling, 11}(3), 305--319.
##' \doi{10.1207/s15328007sem1103_1}
##'
##' Kuha, J. (2004). AIC and BIC: Comparisons of assumptions and performance.
##' \emph{Sociological Methods Research, 33}(2), 188--229.
##' \doi{10.1177/0049124103262065}
##'
##' Preacher, K. J. (2006). Quantifying parsimony in structural equation
##' modeling. \emph{Multivariate Behavioral Research, 43}(3), 227-259.
##' \doi{10.1207/s15327906mbr4103_1}
##'
##' West, S. G., Taylor, A. B., & Wu, W. (2012). Model fit and model selection
##' in structural equation modeling. In R. H. Hoyle (Ed.), \emph{Handbook of
##' structural equation modeling} (pp. 209--231). New York, NY: Guilford.
##'
##' @examples
##'
##' HS.model <- ' visual =~ x1 + x2 + x3
##' textual =~ x4 + x5 + x6
##' speed =~ x7 + x8 + x9 '
##'
##' fit <- cfa(HS.model, data = HolzingerSwineford1939)
##' moreFitIndices(fit)
##'
##' fit2 <- cfa(HS.model, data = HolzingerSwineford1939, estimator = "mlr")
##' moreFitIndices(fit2)
##'
##' @export
moreFitIndices <- function(object, fit.measures = "all", nPrior = 1) {
## check for validity of user-specified "fit.measures" argument
fit.choices <- c("gammaHat","adjGammaHat","baseline.rmsea",
"gammaHat.scaled","adjGammaHat.scaled","baseline.rmsea.scaled",
"aic.smallN","bic.priorN","spbic","hbic","ibic","sic","hqc")
flags <- setdiff(fit.measures, c("all", fit.choices))
if (length(flags)) stop(paste("Argument 'fit.measures' includes invalid options:",
paste(flags, collapse = ", "),
"Please choose 'all' or among the following:",
paste(fit.choices, collapse = ", "), sep = "\n"))
if ("all" %in% fit.measures) fit.measures <- fit.choices
# Extract fit indices information from lavaan object
fit <- lavInspect(object, "fit")
# Get the number of variable
p <- length(lavaan::lavNames(object, type = "ov", group = 1))
# Get the number of parameters
nParam <- fit["npar"]
# Find the number of groups
ngroup <- lavInspect(object, "ngroups")
# Get number of observations
N <- n <- lavInspect(object, "ntotal")
if (lavInspect(object, "options")$mimic == "EQS") n <- n - ngroup
## Calculate -2*log(likelihood)
f <- -2 * fit["logl"]
## Compute fit indices
result <- list()
if (length(grep("gamma", fit.measures, ignore.case = TRUE))) {
gammaHat <- p / (p + 2 * ((fit["chisq"] - fit["df"]) / n))
adjGammaHat <- 1 - (((ngroup * p * (p + 1)) / 2) / fit["df"]) * (1 - gammaHat)
result["gammaHat"] <- gammaHat
result["adjGammaHat"] <- adjGammaHat
if (any(grepl(pattern = "scaled", x = names(fit)))) {
gammaHatScaled <- p / (p + 2 * ((fit["chisq.scaled"] - fit["df.scaled"]) / n))
adjGammaHatScaled <- 1 - (((ngroup * p * (p + 1)) / 2) / fit["df.scaled"]) * (1 - gammaHatScaled)
result["gammaHat.scaled"] <- gammaHatScaled
result["adjGammaHat.scaled"] <- adjGammaHatScaled
}
}
if (length(grep("rmsea", fit.measures))) {
result["baseline.rmsea"] <- nullRMSEA(object, silent = TRUE)
if (any(grepl(pattern = "scaled", x = names(fit)))) {
result["baseline.rmsea.scaled"] <- nullRMSEA(object, scaled = TRUE, silent = TRUE)
}
}
## Compute information criteria
if (!is.na(f)) {
if ("aic.smallN" %in% fit.measures) {
warning('AICc (aic.smallN) was developed for univariate linear models.',
' It is probably not appropriate to use AICc to compare SEMs.')
result["aic.smallN"] <- fit[["aic"]] + (2 * nParam * (nParam + 1)) / (N - nParam - 1)
}
if ("bic.priorN" %in% fit.measures) {
result["bic.priorN"] <- f + log(1 + N/nPrior) * nParam
}
if ("spbic" %in% fit.measures) {
theta <- lavaan::coef(object)
FIM <- lavInspect(object, "information.observed")
junk <- t(theta) %*% FIM %*% theta
if (nParam < junk) {
result["spbic"] <- f + nParam*(1 - log(nParam / junk)) # Case 1
} else result["spbic"] <- f + junk # Case 2
}
if ("hbic" %in% fit.measures) result["hbic"] <- f - nParam*log(2*pi)
## check determinant of ACOV for IBIC and SIC
if (any(c("ibic","sic") %in% fit.measures)) {
ACOV <- lavInspect(object, "vcov")
detACOV <- det(ACOV)
if (detACOV <= 0) {
## look for duplicate names (simple equality constraints) to
## remove any obviously redundant parameters
#TODO: any way to check for redundancies implied by "==" constraints?
RN <- unique(rownames(ACOV))
if (length(RN) < nrow(ACOV)) detACOV <- det(ACOV[RN, RN])
}
}
if ("ibic" %in% fit.measures) {
if (detACOV <= 0) {
result["ibic"] <- NA
message('Determinant of vcov(object) <= 0, so IBIC cannot be calculated')
} else result["ibic"] <- f - nParam*log(2*pi) - log(detACOV)
}
if ("sic" %in% fit.measures) {
if (detACOV <= 0) {
result["sic"] <- NA
message('Determinant of vcov(object) <= 0, so SIC cannot be calculated')
} else result["sic"] <- f - log(detACOV)
}
if ("hqc" %in% fit.measures) result["hqc"] <- f + 2 * log(log(N)) * nParam
}
result <- unlist(result[fit.measures])
class(result) <- c("lavaan.vector","numeric")
result
}
##' Calculate the RMSEA of the null model
##'
##' Calculate the RMSEA of the null (baseline) model
##'
##' RMSEA of the null model is calculated similar to the formula provided in the
##' \code{lavaan} package. The standard formula of RMSEA is
##'
##' \deqn{ RMSEA =\sqrt{\frac{\chi^2}{N \times df} - \frac{1}{N}} \times
##' \sqrt{G} }
##'
##' where \eqn{\chi^2} is the chi-square test statistic value of the target
##' model, \eqn{N} is the total sample size, \eqn{df} is the degree of freedom
##' of the hypothesized model, \eqn{G} is the number of groups. Kenny proposed
##' in his website that
##'
##' "A reasonable rule of thumb is to examine the RMSEA for the null model and
##' make sure that is no smaller than 0.158. An RMSEA for the model of 0.05 and
##' a TLI of .90, implies that the RMSEA of the null model is 0.158. If the
##' RMSEA for the null model is less than 0.158, an incremental measure of fit
##' may not be that informative."
##'
##' See also \url{http://davidakenny.net/cm/fit.htm}
##'
##'
##' @importFrom lavaan lavInspect
##'
##' @param object The lavaan model object provided after running the \code{cfa},
##' \code{sem}, \code{growth}, or \code{lavaan} functions.
##' @param scaled If \code{TRUE}, the scaled (or robust, if available) RMSEA
##' is returned. Ignored if a robust test statistic was not requested.
##' @param silent If \code{TRUE}, do not print anything on the screen.
##'
##' @return A value of RMSEA of the null model (a \code{numeric} vector)
##' returned invisibly.
##'
##' @author
##' Ruben Arslan (Humboldt-University of Berlin, \email{rubenarslan@@gmail.com})
##'
##' Terrence D. Jorgensen (University of Amsterdam; \email{TJorgensen314@@gmail.com})
##'
##' @seealso
##' \itemize{
##' \item \code{\link{miPowerFit}} For the modification indices and their
##' power approach for model fit evaluation
##' \item \code{\link{moreFitIndices}} For other fit indices
##' }
##'
##' @references Kenny, D. A., Kaniskan, B., & McCoach, D. B. (2015). The
##' performance of RMSEA in models with small degrees of freedom.
##' \emph{Sociological Methods Research, 44}(3), 486--507.
##' \doi{10.1177/0049124114543236}
##'
##' @examples
##'
##' HS.model <- ' visual =~ x1 + x2 + x3
##' textual =~ x4 + x5 + x6
##' speed =~ x7 + x8 + x9 '
##'
##' fit <- cfa(HS.model, data = HolzingerSwineford1939)
##' nullRMSEA(fit)
##'
##' @export
nullRMSEA <- function(object, scaled = FALSE, silent = FALSE) {
fit <- lavaan::update(object, model = lavaan::lav_partable_independence(object))
fits <- lavaan::fitMeasures(fit, fit.measures = c("rmsea","rmsea.scaled",
"rmsea.robust"))
if (scaled) {
RMSEA <- fits["rmsea.robust"]
if (is.na(RMSEA)) RMSEA <- fits["rmsea.scaled"]
if (is.na(RMSEA)) RMSEA <- fits["rmsea"]
} else RMSEA <- fits["rmsea"]
if (!silent) {
cat("The baseline model's RMSEA =", RMSEA, "\n\n")
if (RMSEA < 0.158 ) {
cat("CFI, TLI, and other incremental fit indices may not be very",
"informative because the baseline model's RMSEA < 0.158",
"(Kenny, Kaniskan, & McCoach, 2015). \n")
}
}
invisible(RMSEA)
}
## Stochastic Information Criterion
## f = minimized discrepancy function
## lresults = lavaan sem output object
#TODO: update to extract f from lresults. Make public?
sic <- function(f, lresults = NULL) {
## p. 596 of doi:10.1007/s10519-004-5587-0 says to use observed Fisher information
E.inv <- lavaan::lavTech(lresults, "inverted.information.observed")
if (inherits(E.inv, "try-error")) {
return(as.numeric(NA))
}
E <- MASS::ginv(E.inv) * lavaan::nobs(lresults)
eigvals <- eigen(E, symmetric = TRUE, only.values = TRUE)$values
# only positive ones
eigvals <- eigvals[ eigvals > sqrt(.Machine$double.eps)]
DET <- prod(eigvals)
## check singular
if (DET <= 0) return(NA)
## return SIC
}
##' Small-\emph{N} correction for \eqn{chi^2} test statistic
##'
##' Calculate small-\emph{N} corrections for \eqn{chi^2} model-fit test
##' statistic to adjust for small sample size (relative to model size).
##'
##' Four finite-sample adjustments to the chi-squared statistic are currently
##' available, all of which are described in Shi et al. (2018). These all
##' assume normally distributed data, and may not work well with severely
##' nonnormal data. Deng et al. (2018, section 4) review proposed small-\emph{N}
##' adjustments that do not assume normality, which rarely show promise, so
##' they are not implemented here. This function currently will apply
##' small-\emph{N} adjustments to scaled test statistics with a warning that
##' they do not perform well (Deng et al., 2018).
##'
##' @importFrom lavaan lavInspect lavNames
##' @importFrom stats pchisq
##' @importFrom methods getMethod
##'
##' @param fit0,fit1 \linkS4class{lavaan} object(s) provided after running the
##' \code{cfa}, \code{sem}, \code{growth}, or \code{lavaan} functions.
##' \linkS4class{lavaan.mi} object(s) also accepted.
##' @param smallN.method \code{character} indicating the small-\emph{N}
##' correction method to use. Multiple may be chosen (all of which assume
##' normality), as described in Shi et al. (2018):
##' \code{c("swain","yuan.2015","yuan.2005","bartlett")}. Users may also
##' simply select \code{"all"}.
##' @param \dots Additional arguments to the \code{\link[lavaan]{lavTestLRT}} or
##' \code{\link{lavTestLRT.mi}} functions. Ignored when \code{is.null(fit1)}.
##' @param omit.imps \code{character} vector specifying criteria for omitting
##' imputations from pooled results. Ignored unless \code{fit0} (and
##' optionally \code{fit1}) is a \linkS4class{lavaan.mi} object. See
##' \code{\link{lavTestLRT.mi}} for a description of options and defaults.
##'
##' @return A \code{list} of \code{numeric} vectors: one for the originally
##' requested statistic(s), along with one per requested \code{smallN.method}.
##' All include the the (un)adjusted test statistic, its \emph{df}, and the
##' \emph{p} value for the test under the null hypothesis that the model fits
##' perfectly (or that the 2 models have equivalent fit).
##' The adjusted chi-squared statistic(s) also include(s) the scaling factor
##' for the small-\emph{N} adjustment.
##'
##' @author
##' Terrence D. Jorgensen (University of Amsterdam; \email{TJorgensen314@@gmail.com})
##'
##' @references
##' Deng, L., Yang, M., & Marcoulides, K. M. (2018). Structural equation
##' modeling with many variables: A systematic review of issues and
##' developments. \emph{Frontiers in Psychology, 9}, 580.
##' \doi{10.3389/fpsyg.2018.00580}
##'
##' Shi, D., Lee, T., & Terry, R. A. (2018). Revisiting the model
##' size effect in structural equation modeling.
##' \emph{Structural Equation Modeling, 25}(1), 21--40.
##' \doi{10.1080/10705511.2017.1369088}
##'
##' @examples
##'
##' HS.model <- '
##' visual =~ x1 + b1*x2 + x3
##' textual =~ x4 + b2*x5 + x6
##' speed =~ x7 + b3*x8 + x9
##' '
##' fit1 <- cfa(HS.model, data = HolzingerSwineford1939[1:50,])
##' ## test a single model (implicitly compared to a saturated model)
##' chisqSmallN(fit1)
##'
##' ## fit a more constrained model
##' fit0 <- cfa(HS.model, data = HolzingerSwineford1939[1:50,],
##' orthogonal = TRUE)
##' ## compare 2 models
##' chisqSmallN(fit1, fit0)
##'
##' @export
chisqSmallN <- function(fit0, fit1 = NULL,
smallN.method = if (is.null(fit1)) c("swain","yuan.2015") else "yuan.2005",
..., omit.imps = c("no.conv","no.se")) {
if ("all" %in% smallN.method) smallN.method <- c("swain","yuan.2015",
"yuan.2005","bartlett")
smallN.method <- intersect(tolower(smallN.method),
c("swain","yuan.2015","yuan.2005","bartlett"))
if (!any(smallN.method %in% c("swain","yuan.2015","yuan.2005","bartlett")))
stop('No recognized options for "smallN.method" argument')
## check class
if (!inherits(fit0, what = c("lavaan","lavaanList")))
stop("this function is only applicable to fitted lavaan models")
## if there are 2 models...
if (!is.null(fit1)) {
## check classes
if (!inherits(fit1, what = c("lavaan","lavaanList")))
stop("this function is only applicable to fitted lavaan models")
modClass <- unique(sapply(list(fit0, fit1), class))
if (length(modClass) > 1L) stop('All models must be of the same class (e.g.,',
' cannot compare lavaan objects to lavaan.mi)')
## check order of DF
suppressMessages(DF0 <- getMethod("fitMeasures", class(fit0))(fit0, fit.measures = "df",
omit.imps = omit.imps)[1])
suppressMessages(DF1 <- getMethod("fitMeasures", class(fit1))(fit1, fit.measures = "df",
omit.imps = omit.imps)[1])
if (DF0 == DF1) stop("Models have the same degrees of freedom.")
parent <- which.min(c(DF0, DF1))
if (parent == 1L) {
parent <- fit0
fit0 <- fit1
fit1 <- parent
parent <- DF0
DF0 <- DF1
DF1 <- parent
}
if (min(c(DF0, DF1)) == 0L) {
message('Less restricted model has df=0, so chi-squared difference ',
'not needed to compare models. Using only the restricted ',
"model's chi-squared statistic.")
fit1 <- NULL
}
}
## check whether methods can be used
if (!is.null(fit1)) {
if (any(smallN.method %in% c("yuan.2015","swain"))) {
message('Swain(1975) and Yuan (2015) corrections depend on the number ',
'of free parameters, so it is unavailable for model comparison.')
smallN.method <- smallN.method[-which(smallN.method %in% c("yuan.2015","swain"))]
}
if (!length(smallN.method)) {
stop('No valid options for "smallN.method" argument')
} else warning('Small-N corrections developed for single models, not for ',
'model comparison. Experimentally applying correction to ',
'chi-squared difference statistic, which might be invalid.')
}
## save quantities relevant across correction methods
N <- lavInspect(fit0, "ntotal")
Ng <- lavInspect(fit0, "ngroups")
if (!lavInspect(fit0, "options")$sample.cov.rescale) N <- N - Ng
P <- length(lavNames(fit0))
K <- length(lavNames(fit0, type = "lv")) # count latent factors
if (is.null(fit1)) {
FIT <- getMethod("fitMeasures", class(fit0))(fit0,
## lavaan.mi arguments ignored
## for lavaan objects
omit.imps = omit.imps,
asymptotic = TRUE,
fit.measures = c("npar","chisq",
"df","pvalue"))
scaled <- any(grepl(pattern = "scaled", x = names(FIT)))
if (scaled) warning('Small-N corrections developed assuming normality, but',
' a scaled test was requested. Applying correction(s) ',
'to the scaled test statistic, but this has not ',
'performed well in past simulations.')
NPAR <- FIT[["npar"]]
chi <- FIT[[if (scaled) "chisq.scaled" else "chisq"]]
DF <- FIT[[if (scaled) "df.scaled" else "df"]]
PV <- FIT[[if (scaled) "pvalue.scaled" else "pvalue"]]
} else {
## Compare to a second model. Check matching stats.
N1 <- lavInspect(fit1, "ntotal")
Ng1 <- lavInspect(fit1, "ngroups")
if (!lavInspect(fit1, "options")$sample.cov.rescale) N1 <- N1 - Ng1
if (N != N1) stop("Unequal sample sizes")
if (P != length(lavNames(fit1))) stop("Unequal number of observed variables")
K1 <- length(lavNames(fit1, type = "lv"))
if (K != K1 && any(smallN.method %in% c("yuan.2005","bartlett"))) {
warning("Unequal number of latent variables (k). Unclear how to apply ",
"Yuan (2005) or Bartlett (2015) corrections when comparing ",
"models with different k. Experimentally using the larger ",
"model's k, but there is no evidence this is valid.")
K <- max(K, K1)
}
AOV <- try(compareFit(fit0, fit1, argsLRT = list(...), indices = FALSE),
silent = TRUE)
if (inherits(AOV, "try-error")) stop('Model comparison failed. Try using ',
'lavTestLRT() to investigate why.')
if (inherits(fit0, "lavaan")) {
if (grepl("scaled", attr(AOV@nested, "heading"), ignore.case = TRUE))
warning('Small-N corrections developed assuming normality, but scaled ',
'tests were requested. Applying correction(s) to the scaled test',
' statistic, but this has not performed well in past simulations.')
chi <- AOV@nested[["Chisq diff"]][2]
DF <- AOV@nested[["Df diff"]][2]
PV <- AOV@nested[["Pr(>Chisq)"]][2]
} else if (inherits(fit0, "lavaan.mi")) {
if (any(grepl("scaled", colnames(AOV@nested), ignore.case = TRUE)))
warning('Small-N corrections developed assuming normality, but scaled ',
'tests were requested. Applying correction(s) to the scaled test',
' statistic, but this has not performed well in past simulations.')
chi <- AOV@nested[1, 1]
DF <- AOV@nested[1, 2]
PV <- AOV@nested[1, 3]
}
}
## empty list to store correction(s)
out <- list()
out[[ lavInspect(fit0, "options")$test ]] <- c(chisq = chi, df = DF,
pvalue = PV)
class(out[[1]]) <- c("lavaan.vector","numeric")
## calculate Swain's (1975) correction
## (undefined for model comparison)
if ("swain" %in% smallN.method) {
Q <- (sqrt(1 + 8*NPAR) - 1) / 2
num <- P*(2*P^2 + 3*P - 1) - Q*(2*Q^2 + 3*Q - 1)
SC <- 1 - num / (12*DF*N)
out[["swain"]] <- c(chisq = chi*SC, df = DF,
pvalue = pchisq(chi*SC, DF, lower.tail = FALSE),
smallN.factor = SC)
class(out[["swain"]]) <- c("lavaan.vector","numeric")
}
## calculate Yuan's (2015) correction
## (undefined for model comparison)
if ("yuan.2015" %in% smallN.method) {
## numerator uses actual N regardless of sample.cov.rescale
SC <- (lavInspect(fit0, "ntotal") - (2.381 + .361*P + .006*NPAR)) / N
out[["yuan.2015"]] <- c(chisq = chi*SC, df = DF,
pvalue = pchisq(chi*SC, DF, lower.tail = FALSE),
smallN.factor = SC)
class(out[["yuan.2015"]]) <- c("lavaan.vector","numeric")
}
## calculate Yuan's (2005) correction
if ("yuan.2005" %in% smallN.method) {
SC <- 1 - ((2*P + 2*K + 7) / (6*N))
out[["yuan.2005"]] <- c(chisq = chi*SC, df = DF,
pvalue = pchisq(chi*SC, DF, lower.tail = FALSE),
smallN.factor = SC)
class(out[["yuan.2005"]]) <- c("lavaan.vector","numeric")
}
## calculate Bartlett's (1950) k-factor correction (ONLY appropriate for EFA)
if ("bartlett" %in% smallN.method) {
message('Bartlett\'s k-factor correction was developed for EFA models, ',
'not for general SEMs.')
SC <- 1 - ((2*P + 4*K + 5) / (6*N))
out[["bartlett"]] <- c(chisq = chi*SC, df = DF,
pvalue = pchisq(chi*SC, DF, lower.tail = FALSE),
smallN.factor = SC)
class(out[["bartlett"]]) <- c("lavaan.vector","numeric")
}
out[c(lavInspect(fit0, "options")$test, smallN.method)]
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.