Nothing
# library(boot)
#library(numbers)
# LAST MODIFIED:
# 15/01/2018
# AUTHORS:
# Gilquin Laurent
# SUMMARY:
# Extension of the replication procedure introduced by Tissot & Prieur (2015)
# to estimate both first-order and second-order indices at a cost of 2*N.
sobolrep <- function(model=NULL, factors, N, tail=TRUE, conf=0.95, nboot=0, nbrep=1, total=FALSE, ...) {
#Initialisation
if (is.character(factors)) {
X.labels <- factors
d <- length(X.labels)
}
else if (factors%%1==0 & factors>0) {
d <- factors
X.labels <- paste("X", 1:d, sep = "")
}
else {
stop("invalid argument 'factors', expecting a positive integer or a character string vector (names).")
}
if (N%%1!=0 | N<=0) {
stop("invalid argument 'N', expecting a positive integer.")
}
if (conf < 0 | conf > 1) {
stop("invalid argument 'conf', expecting a value in ]0,1[.")
}
if (!is.logical(tail)) {
stop("invalid argument 'tail', expecting a boolean.")
}
if(nboot%%1!=0 | nboot<0){
stop("invalid argument 'nboot', expecting a positive integer or zero.")
}
if(!is.logical(total)){
stop("invalid argument 'total', expecting a boolean.")
}
# Conditions checking:
if(N>=(d-1)^2){
if (sqrt(N)%%1==0) {
if (numbers::isPrime(sqrt(N))){
q <- sqrt(N)
}
else if (length(unique(primeFactors(sqrt(N))))==1){
q <- sqrt(N)
} else {
if (tail){
q <- numbers::previousPrime(sqrt(N))
N <- q^2
} else {
q <- numbers::nextPrime(sqrt(N))
N <- q^2
}
warning("The value entered for N is not the square of a prime number. It has been replaced by: ",paste(q^2))
}
}
if (sqrt(N)%%1!=0) {
if (tail){
q <- numbers::previousPrime(sqrt(N))
N <- q^2
} else {
q <- numbers::nextPrime(sqrt(N))
N <- q^2
}
warning("The value entered for N is not the square of a prime number. It has been replaced by: ",paste(q^2))
}
}
if(N<d^2){
q <- numbers::nextPrime(d)
N <- q^2
warning("The value entered for N is not satisfying the constraint N >= (d-1)^2. It has been replaced by: ",paste(q^2))
}
# Main structures allocation
doe <- matrix(NA,nrow=N,ncol=2*d)
# matrix of permutations
perm <- replicate(2*d,sample(q))
# orthogonal array
doe0a <- addelman_const(d,q,choice="U")
doe0b <- addelman_const(d,q,choice="W")
# matrix of random numbers
mat_rand <- matrix(runif(d*q),nrow=q,ncol=d)
# construction of the two replicated designs
for (i in 1:d) {
p1 <- perm[doe0a[,i],i]
p2 <- perm[doe0b[,i],d+i]
doe[,c(i,d+i)] <- (c(p1,p2)-mat_rand[c(p1,p2),i])/q
}
# Stocking the ordering matrix
loop_index <- t(combn(d,2))
RP <- matrix(NA,nrow=N,ncol=d+nrow(loop_index))
for(ind in 1:d){
p1 <- order(doe[,ind])
p2 <- order(doe[,d+ind])
RP[,ind] <- p2[order(p1)]
}
for(ind in 1:nrow(loop_index)){
p1 <- do.call(base::order,as.data.frame(doe[,loop_index[ind,]]))
p2 <- do.call(base::order,as.data.frame(doe[,d+loop_index[ind,]]))
RP[,d+ind] <- p2[order(p1)]
}
# Deleting unused objects
rm(perm,doe0a,doe0b,mat_rand,p1,p2,loop_index)
#Stocking of the two replicated designs
X <- rbind(doe[,1:d],doe[,(d+1):(2*d)])
# Dealing with total case
if(total){
# LHS sampling for the d additional designs
perm <- replicate(d,sample(N))
doetot <- matrix(runif(N*d),nrow=N,ncol=d)
for (i in 1:d){
p1 <- perm[,i]
doetot[,i] <- (p1-doetot[p1,i])/N
}
# creation of the d addtional designs
index <- seq(1,d) + seq(0,d-1)*d
X0 <- matrix(c(rep(doe[,(d+1):(2*d)],d)),ncol=d^2)
X0[,index] <- doetot
Xtot <- matrix(X0[,c(outer(seq(1,d^2,by=d),seq(0,d-1),'+'))],ncol=d)
X <- rbind(X, Xtot)
rm(perm,doetot,p1,X0,index)
}
# object of class "sobolrep"
x <- list(model=model, factors=factors, X=X, RP=RP, N=N, order=t,
conf=conf, tail=tail, nboot=nboot, nbrep=nbrep, total=total, call=match.call())
class(x) <- "sobolrep"
# computing the response if the model is given
if (!is.null(x$model)) {
response(x, ...)
tell(x, ...)
}
return(x)
}
# --------------------------------------------------------------------
# Get new repetition
repeat.sobolrep <- function(Ord, RP, mat_rep = NULL, pow_init=NULL){
new_RP <- matrix(0,ncol=ncol(RP),nrow=nrow(RP))
d <- ncol(RP)
q <- sqrt(nrow(RP))
for(ind in 1:d){
p1 <- RP[,ind]
col_Ord <- matrix(Ord[,ind],ncol=q)
new_col <- c(apply(col_Ord,2,sample))
map <- setNames(new_col,c(col_Ord))
new_RP[,ind] <- unname(map[as.character(p1)])
}
return(new_RP)
}
# --------------------------------------------------------------------
# Estim method to estimate first-order and second-order Sobol' indices
#-------------------------
# NEW CODE : Rcpp Version
#-------------------------
estim.sobolrep <- function(data, i = 1 : nrow(data), RP, d, I, ...){
res <- cpp_get_indices(data, RP, I, i, d)
out <- c(unlist(res))
return(out)
}
#-------------------------
# OLD CODE : R Version
#-------------------------
# estim.sobolrep <- function(data, i = 1 : nrow(data), RP, d, I, ...){
#
# # local variables
# N <- nrow(data)
# Y_i <- data[i,1]
#
# #Sobol' indices calculation
#
# # first-order
# Y <- matrix(NA,ncol=d,nrow=N)
# for(j in 1:d){
# Y[,j] <- data[RP[i,j],2]
# }
#
# Mean <- colMeans(Y)
# MeanY <- (mean(Y_i)+Mean)/2
#
# S <- rep(NA,d)
# a <- rep(0,d)
# b <- rep(0,d)
# c <- rep(0,d)
# out <- rep(0,d)
# ind <- rep(1,d)
# ind2 <- 2:(d+1)
# S <- .C("LG_estimator",as.double(c(Y_i,Y)),as.double(MeanY),as.integer(d),as.integer(N),as.integer(ind),as.integer(ind2),as.double(a),as.double(b),as.double(c),as.double(out))[[10]]
#
# # second-order
# Y <- matrix(NA,nrow=N,ncol=nrow(I))
# for(j in 1:nrow(I)){
# Y[,j] <- data[RP[i,d+j],2]
# }
# Mean <- colMeans(Y)
# MeanY <- (mean(Y_i)+Mean)/2
#
# a <- rep(0,nrow(I))
# b <- rep(0,nrow(I))
# c <- rep(0,nrow(I))
# out <- rep(0,nrow(I))
# ind <- rep(1,nrow(I))
# ind2 <- 2:(nrow(I)+1)
# S2 <- .C("LG_estimator",as.double(c(Y_i,Y)),as.double(MeanY),as.integer(nrow(I)),as.integer(N),as.integer(ind),as.integer(ind2),as.double(a),as.double(b),as.double(c),as.double(out))[[10]]
# S2 <- S2-S[I[,1]]-S[I[,2]]
# return(c(S,S2))
# }
# --------------------------------------------------------------------
# Estim method to estimate total-effect Sobol' indices
estimtotal.sobolrep <- function(data, i = 1 : nrow(data), ...){
#total effect Sobol' indices
ST <- cpp_get_total_indices(data, i)
return(ST)
}
# --------------------------------------------------------------------
# Tell method to estimate Sobol' indices and compute bootstrap confidence intervals
tell.sobolrep <- function(x, y = NULL, ...){
id <- deparse(substitute(x))
if (! is.null(y)) {
x$y <- y
}
else if (is.null(x$y)) {
stop("y not found")
}
# Arguments
X2 <- x$X[(x$N+1):(2*x$N),]
Ord <- apply(X2,2,base::order)
RP <- x$RP
d <- x$factors
nbrep <- x$nbrep
total <- x$total
if(total){
fulldata <- matrix(x$y,ncol=d+2)
data <- fulldata[,1:2]
datatot <- fulldata[,2:(d+2)]
} else{
data <- matrix(x$y,ncol=2)
}
# Repetitions
S0 <- 0
Sb <- 0
S2b <- 0
S20 <- 0
timm <- as.numeric(Sys.time())
seed_val <- ((timm-floor(timm))) * 1e8
I <- t(combn(d,2))
for(rep in 1:nbrep){
new_RP <- cbind(repeat.sobolrep(Ord,RP[,1:d]),RP[,(d+1):ncol(RP)])
# Sobol' indices estimation and confidence intervals
if (x$nboot == 0){
indices <- data.frame(original = estim.sobolrep(data=data, RP=new_RP, d=d, I=I))
Sb <- data.frame("original"=indices[1:d,]) + Sb
S2b <- data.frame("original"=indices[(d+1):nrow(indices),]) + S2b
} else{
set.seed(seed_val)
S.boot <- boot(data=data, estim.sobolrep, R = x$nboot, RP=new_RP, d=d, I=I)
Sb <- as.matrix(S.boot$t[,1:d]) + Sb
S0 <- S.boot$t0[1:d] + S0
S2b <- as.matrix(S.boot$t[,(d+1):ncol(RP)]) + S2b
S20 <- S.boot$t0[(d+1):ncol(RP)] + S20
}
set.seed(NULL)
}
if (x$nboot == 0){
x$S <- Sb/nbrep
x$S2 <- S2b/nbrep
} else{
S.boot$t <- cbind(Sb, S2b)/x$nbrep
S.boot$t0 <- c(S0, S20)/x$nbrep
indices <- bootstats(S.boot, x$conf, "bias corrected")
x$S <- indices[1:d,]
x$S2 <- indices[(d+1):nrow(indices),]
}
if(total){
if (x$nboot == 0){
x$T <- data.frame("original"=estimtotal.sobolrep(datatot))
} else{
ST.boot <- boot(datatot, estimtotal.sobolrep, R = x$nboot)
x$T <- bootstats(ST.boot, x$conf, "bias corrected")
}
}
# output
x$V <- var(data[,1])
rownames <- paste("X",1:d,sep="")
rownames2 <- paste("X",apply(t(combn(d,2)),1,paste,collapse=""),sep= "")
rownames(x$S) <- rownames
rownames(x$S2) <- rownames2
if(total){
rownames(x$T) <- rownames
}
assign(id, x, parent.frame())
}
# --------------------------------------------------------------------
# Print method to copy results: model variance, percentage of missing values and Sobol' estimates.
print.sobolrep <- function(x, ...) {
cat("\nCall:\n", deparse(x$call), "\n", sep = "")
if(x$total){
cat("\nModel runs:", x$N*(x$factors+2), "\n")
} else{
cat("\nModel runs:", 2*x$N, "\n")
}
if (!is.null(x$y)) {
cat("\nModel variance:\n")
print(x$V)
cat("\nFirst-order indices:\n")
print(x$S)
cat("\nClosed second-order indices:\n")
print(x$S2)
if(x$total){
cat("\nTotal-effect indices:\n")
print(x$T)
}
}
}
# --------------------------------------------------------------------
# Plot method to draw Sobol' estimates
plot.sobolrep <- function(x, ylim = c(0, 1), choice, ...) {
if (!is.null(x$y)) {
if (choice==1){
nodeplot(x$S, ylim = ylim, ...)
legend(x = "topright", legend = c("First-order indices"))
}
if (choice==2){
nodeplot(x$S2, ylim = ylim, ...)
legend(x = "topright", legend = c("Second-order indices"))
}
if (choice==3 & x$total){
nodeplot(x$T, ylim = ylim, ...)
legend(x = "topright", legend = c("Total-effect indices"))
}
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.