R/dia.bactgensize.R

Defines functions dia.bactgensize

Documented in dia.bactgensize

dia.bactgensize <- function(
        fit = 2, p = 0.5, m1 = 2000, sd1 = 600, m2 = 4500, sd2 = 1000, p3 = 0.05,
        m3 = 9000, sd3 = 1000, maxgensize = 20000,
        source = c("https://pbil.univ-lyon1.fr/datasets/seqinr/data/goldtable15Dec07.txt"))
{
    #
    # Use local source by default:
    #
    source <- source[1]
    #
    # Build source of data string:
    #
    
    sodtxt <- "Source of data: GOLD (Genomes OnLine Database) 15 Dec 2007"
    
    #
    # Read data from GOLD:
    #
    alldata <- utils::read.table(source, header = TRUE, sep = "\t",
                          comment.char = "", quote = "")
    SUPERKINGDOM <- 1 # col number
    kingdom <- alldata[, SUPERKINGDOM]
    prodata <- alldata[ kingdom == "Archaea" | kingdom == "Bacteria", ]
    data <- prodata[, c("GENUS", "SPECIES", "SIZE.kb.")]
    names(data) <- c("genus", "species", "gs")
    data <- data[stats::complete.cases(data), ]
    #
    # Remove data > maxgensize:
    #
    data <- data[data$gs <= maxgensize, ]
    #
    # Use Kb scale
    #
    sizeKb <- data$gs
    n <- length(sizeKb)
    #
    # Graphics
    #
    x <- seq( min(sizeKb), max(sizeKb), le=200)
    mybreaks <- seq(min(sizeKb),max(sizeKb),length=15)
    vscale <- diff(mybreaks)[1]*n
    
    if(fit == 0)
    {
        hst <- graphics::hist(sizeKb, freq = TRUE,
                    breaks = mybreaks,
                    main=paste("Genome size distribution for", n, "bacterial genomes"),
                    xlab="Genome size [Kb]",
                    ylab="Genome count",
                    col="lightgrey")
        
        dst <- stats::density(sizeKb)
        graphics::lines(x=dst$x, y=vscale*dst$y)
        graphics::legend(x = max(sizeKb)/2, y = 0.75*max(hst$counts), lty=1,
               "Gaussian kernel density estimation")
        
        graphics::mtext(sodtxt)
    }
    ##########################################
    #
    # Fitting a mixture of two normal distributions
    #
    ###########################################
    if(fit == 2)
    {
        logvraineg <- function(param, obs)
        {
            p <- param[1]
            m1 <- param[2]
            sd1 <- param[3]
            m2 <- param[4]
            sd2 <- param[5]
            
            -sum(log(p*stats::dnorm(obs,m1,sd1)+(1-p)*stats::dnorm(obs,m2,sd2)))
        }
        
        nlmres <- suppressWarnings(stats::nlm(logvraineg, c(p, m1, sd1, m2, sd2), obs=sizeKb))
        estimate <- nlmres$estimate
        
        y1 <- vscale*estimate[1]*stats::dnorm(x, estimate[2], estimate[3])
        y2 <- vscale*(1-estimate[1])*stats::dnorm(x, estimate[4], estimate[5])
        dst <- stats::density(sizeKb)
        
        hst <- graphics::hist(sizeKb, plot = FALSE, breaks = mybreaks)
        ymax <- max(y1, y2, hst$counts, vscale*dst$y)
        
        
        graphics::hist(sizeKb, freq = TRUE, ylim=c(0,ymax),
             breaks = mybreaks,
             main=paste("Genome size distribution for", n, "bacterial genomes"),
             xlab="Genome size [Kb]",
             ylab="Genome count",
             col="lightgrey")
        
        graphics::lines(x, y1, col="red", lwd=2)
        graphics::lines(x, y2, col="blue", lwd=2)
        
        graphics::text(x = max(sizeKb)/2, y = ymax, pos=4, "Maximum likelihood estimates:")
        
        graphics::text(x = max(sizeKb)/2, y = 0.95*ymax, col="red", pos = 4, cex=1.2,
             substitute(hat(p)[1] == e1~~hat(mu)[1] == e2~~hat(sigma)[1] == e3,
                        list(e1 = round(estimate[1],3),
                             e2 = round(estimate[2],1),
                             e3 = round(estimate[3],1))))
        
        graphics::text(x = max(sizeKb)/2, y = 0.90*ymax, col="blue", pos = 4, cex=1.2,
             substitute(hat(p)[2] == q~~hat(mu)[2] == e4~~hat(sigma)[2] == e5,
                        list(q = round(1 - estimate[1],3),
                             e4 = round(estimate[4],1),
                             e5 = round(estimate[5],1))))
        
        graphics::lines(x=dst$x, y=vscale*dst$y)
        graphics::legend(x = max(sizeKb)/2, y = 0.75*ymax, lty=1,
               "Gaussian kernel density estimation")
        
        graphics::mtext(sodtxt)
    }
    ##########################################
    #
    # Fitting a mixture of three normal distributions
    #
    ###########################################
    if(fit == 3)
    {
        logvraineg <- function(param, obs)
        {
            p <- param[1]
            m1 <- param[2]
            sd1 <- param[3]
            m2 <- param[4]
            sd2 <- param[5]
            p3 <- param[6]
            m3 <- param[7]
            sd3 <- param[8]
            
            -sum(log(p*stats::dnorm(obs,m1,sd1)
                     +(1-p-p3)*stats::dnorm(obs,m2,sd2)
                     +p3*stats::dnorm(obs,m3,sd3)))
        }
        
        nlmres <- suppressWarnings(stats::nlm(logvraineg, c(p, m1, sd1, m2, sd2, p3, m3, sd3), obs=sizeKb))
        estimate <- nlmres$estimate
        
        y1 <- vscale*estimate[1]*stats::dnorm(x, estimate[2], estimate[3])
        y2 <- vscale*(1-estimate[1]-estimate[6])*stats::dnorm(x, estimate[4], estimate[5])
        y3 <- vscale*estimate[6]*stats::dnorm(x, estimate[7], estimate[8])
        
        hst <- graphics::hist(sizeKb, plot = FALSE, breaks = mybreaks)
        ymax <- max(y1, y2, y3, hst$counts)
        
        graphics::hist(sizeKb, freq = TRUE, ylim=c(0,ymax),
             breaks = mybreaks,
             main=paste("Genome size distribution for", n, "bacterial genomes"),
             xlab="Genome size [Kb]",
             ylab="Genome count",
             col="lightgrey")
        
        graphics::lines(x, y1, col="red", lwd=2)
        graphics::lines(x, y2, col="blue", lwd=2)
        graphics::lines(x, y3, col="green3", lwd=2)
        
        graphics::text(x = max(sizeKb)/2, y = ymax, pos=4, "Maximum likelihood estimates:")
        
        graphics::text(x = max(sizeKb)/2, y = 0.95*ymax, col="red", pos = 4, cex=1.2,
             substitute(hat(p)[1] == e1~~hat(mu)[1] == e2~~hat(sigma)[1] == e3,
                        list(e1 = round(estimate[1],3),
                             e2 = round(estimate[2],1),
                             e3 = round(estimate[3],1))))
        
        graphics::text(x = max(sizeKb)/2, y = 0.90*ymax, col="blue", pos = 4, cex=1.2,
             substitute(hat(p)[2] == q~~hat(mu)[2] == e4~~hat(sigma)[2] == e5,
                        list(q = round(1 - estimate[1]-estimate[6],3),
                             e4 = round(estimate[4],1),
                             e5 = round(estimate[5],1))))
        
        graphics::text(x = max(sizeKb)/2, y = 0.85*ymax, col="green3", pos = 4, cex=1.2,
             substitute(hat(p)[3] == p3~~hat(mu)[3] == e7~~hat(sigma)[3] == e8,
                        list(p3 = round(estimate[6],3),
                             e7 = round(estimate[7],1),
                             e8 = round(estimate[8],1))))
        
        dst <- stats::density(sizeKb)
        graphics::lines(x=dst$x, y=vscale*dst$y)
        graphics::legend(x = max(sizeKb)/2, y = 0.75*ymax, lty=1,
               "Gaussian kernel density estimation")
        
        graphics::mtext(sodtxt)
    }
    #
    # Return invisibly the dataset
    #
    invisible(data)
}

Try the seqinr package in your browser

Any scripts or data that you put into this service are public.

seqinr documentation built on May 29, 2024, 6:36 a.m.