# R/spectralDescr.R In soundgen: Sound Synthesis and Acoustic Analysis

#### Documented in harmEnergyharmHeightharmHeight_difharmHeight_peakssubhToHarm

```#' Height of harmonics
#'
#' Internal soundgen function
#'
#' Attempts to estimate how high harmonics reach in the spectrum - that is, at
#' what frequency we can still discern peaks at multiples of f0 or, for
#' low-pitched sounds, regularly spaced peaks separated by ~f0.
#' @inheritParams analyzeFrame
#' @param pitch the final pitch estimate for the current frame
#' @param harmThres minimum height of spectral peak, dB
#' @param harmPerSel the number of harmonics per sliding selection
#' @param harmTol maximum tolerated deviation of peak frequency from multiples
#'   of f0, proportion of f0
#' @return Returns the frequency (Hz) up to which we find harmonics
#' @keywords internal
#' @examples
#' s = soundgen(sylLen = 400, addSilence = 0, pitch = 400, noise = -10,
#'   rolloff = -15, jitterDep = .1, shimmerDep = 5, temperature = .001)
#' sp = spectrogram(s, samplingRate = 16000)
#' hh = soundgen:::harmHeight(sp[, 5], pitch = 400,
#'   freqs = as.numeric(rownames(sp)) * 1000, bin = 16000 / 2 / nrow(sp))
harmHeight = function(frame,
pitch,
bin,
freqs,
harmThres = 3,
harmTol = 0.25,
harmPerSel = 5) {
frame_dB = 20 * log10(frame)

# METHOD 1: look for peaks at multiples of f0
lh_peaks = harmHeight_peaks(frame_dB, pitch, bin, freqs,
harmThres = harmThres,
harmTol = harmTol,
plot = FALSE)

# METHODS 2 & 3: look for peaks separated by f0
lh2 = harmHeight_dif(frame_dB, pitch, bin, freqs,
harmThres = harmThres,
harmTol = harmTol,
harmPerSel = harmPerSel,
plot = FALSE)
lh = median(c(lh_peaks, lh2\$lastHarm_dif, lh2\$lastHarm_cep), na.rm = TRUE)
return(list(harmHeight = lh,
harmHeight_peaks = lh_peaks,
harmHeight_dif = lh2\$lastHarm_dif,
harmHeight_cep = lh2\$lastHarm_cep))
}

#' Height of harmonics: peaks method
#'
#' Internal soundgen function
#'
#' Estimates how far harmonics reach in the spectrum by checking how many
#' spectral peaks we can find close to multiples of f0.
#' @inheritParams harmHeight
#' @param plot if TRUE, produces a plot of spectral peaks
#' @keywords internal
harmHeight_peaks = function(frame_dB,
pitch,
bin,
freqs,
harmThres = 3,
harmTol = 0.25,
plot = FALSE) {
harmSmooth = round(harmTol * pitch / bin)  # from prop of f0 to bins
nHarm = floor((max(freqs) - harmSmooth * bin) / pitch)
peakFound = rep(FALSE, nHarm)
if (plot) plot(freqs, frame_dB, type = 'l')
for (h in 1:nHarm) {
# check f0 as well, otherwise may get 2 * f0 although f0 is also below thres
bin_h = round(pitch * h / bin)
# b/c of rounding error, and b/c pitch estimates are often slightly off, the
# true harmonic may lie a bit above or below this bin, so we search for a
# peak within harmSmooth of where we expect to find it
idx_peak = which.max(frame_dB[(bin_h - harmSmooth) : (bin_h + harmSmooth)])
bin_peak = bin_h + idx_peak - harmSmooth - 1
# left
if (bin_peak == 1) {
left_over_zero = left_over_thres = TRUE
} else {
# should be higher than both adjacent points
left_over_zero = frame_dB[bin_peak] - frame_dB[bin_peak - 1] > 0
# should be higher than either of the adjacent points by harmThres
left_over_thres = frame_dB[bin_peak] - frame_dB[bin_peak - 1] > harmThres
}
# right
if (bin_peak == length(frame_dB)) {
right_over_zero = right_over_thres = TRUE
} else {
right_over_zero = frame_dB[bin_peak] - frame_dB[bin_peak + 1] > 0
right_over_thres = frame_dB[bin_peak] - frame_dB[bin_peak + 1] > harmThres
}
peakFound[h] = left_over_zero & right_over_zero &
(left_over_thres | right_over_thres)

if (plot) {  # plot for debugging
if (peakFound[h]) {
text(freqs[bin_peak], frame_dB[bin_peak],
labels = h, pch = 5, col = 'blue')
} else {
text(freqs[bin_peak], frame_dB[bin_peak],
labels = h, pch = 5, col = 'red')
}
}
}
first_absent_harm = which(!peakFound)
if (length(first_absent_harm) > 0) {
lastHarm = pitch * (first_absent_harm - 1)
} else {
lastHarm = NA
}
return(lastHarm)
}

#' Height of harmonics: difference method
#'
#' Internal soundgen function
#'
#' Estimates how far harmonics reach in the spectrum by analyzing the typical
#' distances between spectral peaks in different frequency regions.
#' @inheritParams harmHeight
#' @param plot if TRUE, produces a plot of spectral peaks
#' @keywords internal
harmHeight_dif = function(frame_dB,
pitch,
bin,
freqs,
harmThres = 3,
harmTol = 0.25,
harmPerSel = 5,
plot = FALSE) {
# width of smoothing interval (in bins), forced to be an odd number
harmSmooth_bins = 2 * ceiling(pitch / bin / 2) - 1

# find peaks in the smoothed spectrum (much faster than seewave::fpeaks)
temp = zoo::rollapply(
zoo::as.zoo(frame_dB),
width = harmSmooth_bins,
align = 'center',
function(x) {
middle = ceiling(length(x) / 2)
which.max(x) == middle &   # peak in the middle
any(x[middle] - x[1:(middle - 1)] > harmThres) &  # a deep drop on the left
any(x[middle] - x[(middle + 1):length(x)] > harmThres)  # ...or on the right
}
)
idx = zoo::index(temp)[zoo::coredata(temp)]

if (plot) {
plot(freqs, frame_dB, type = 'l')
points(freqs[idx], frame_dB[idx], pch = 5, col = 'blue')
}

# slide a selection along the spectrum starting from f0
pitch_bins = pitch / bin  # f0 location in bins
# width of selection in bins (no more than half the frame len)
sel_bins = min(round(pitch_bins * harmPerSel), length(frame_dB) / 2)
harmTol_bins = round(pitch_bins * harmTol)  # tolerated deviance in bins
i = pitch_bins  # start at f0
pitch_bin_cep = pitch_bin_peaks = vector('logical', 0)
while (i + sel_bins < length(frame_dB)) {
end = i + sel_bins - 1

# count intervals b/w spectral peaks
d = diff(idx[idx >= i & idx <= end])  # distances b/w peaks
# median deviation of these distances from expected (f0)
dp = abs(median(d, na.rm = TRUE) - pitch_bins)
dp_within_tol = (dp < harmTol_bins)
pitch_bin_peaks = c(pitch_bin_peaks, dp_within_tol)

# cepstrum
sel = as.numeric(frame_dB[i:(i + sel_bins - 1)])
cep = abs(fft(sel))
# plot(sel, type = 'l')
l = length(cep) %/% 2
cep = cep[1:l]
# plot(cep, type = 'l')
bin_at_pitch = harmPerSel + 1
# Is there a local max at bin_at_pitch? Any height will do
peak_at_pitch = (cep[bin_at_pitch] > cep[bin_at_pitch - 1]) &
(cep[bin_at_pitch] > cep[bin_at_pitch + 1])
pitch_bin_cep = c(pitch_bin_cep, peak_at_pitch)

i = round(i + pitch_bins)  # move the sel by one harmonic (f0)
}

# Find the central frequency of the first bin w/o harmonics
fbwh_peaks = which(!pitch_bin_peaks)
if (is.na(fbwh_peaks)) {
lastHarm_dif = tail(freqs, 1)
} else {
lastHarm_dif = (pitch_bins * (fbwh_peaks - 1) - sel_bins / 2) * bin
if (!is.na(lastHarm_dif) && lastHarm_dif < pitch) lastHarm_dif = NA
}

fbwh_cep = which(!pitch_bin_cep)
if (is.na(fbwh_cep)) {
lastHarm_cep = tail(freqs, 1)
} else {
lastHarm_cep = (pitch_bins * (fbwh_cep - 1) - sel_bins / 2) * bin
if (!is.na(lastHarm_cep) && lastHarm_cep < pitch) lastHarm_cep = NA
}
lastHarm_cep = (pitch_bins * (fbwh_cep - 1) - sel_bins / 2) * bin
if (!is.na(lastHarm_cep) && lastHarm_cep < pitch) lastHarm_cep = NA

return(list(lastHarm_cep = lastHarm_cep,
lastHarm_dif = lastHarm_dif))
}

#' Energy in harmonics
#'
#' Internal soundgun function
#'
#' Calculates the % of energy in harmonics based on the provided pitch estimate
#' @param pitch pitch estimates, Hz (vector)
#' @param s spectrogram (ncol = length(pitch))
#' @param coef calculate above pitch * coef
#' @param freqs as.numeric(rownames(s)) * 1000
#' @keywords internal
harmEnergy = function(pitch, s, freqs = NULL, coef = 1.25) {
if (is.null(freqs)) freqs = as.numeric(rownames(s)) * 1000
threshold = coef * pitch
he = apply(matrix(1:ncol(s)), 1, function(x) {
ifelse(is.na(threshold[x]),
NA,
sum(s[freqs > threshold[x], x]) / sum(s[, x]))
})
return(he)
}

#' Subharmonics-to-harmonics ratio
#'
#' Internal soundgen function
#'
#' Looks for pitch candidates (among the ones already found if method =
#' 'pitchCands', or using some other pitch-tracking-like techniques such as
#' cepstrum) at integer ratios of f0. If such candidates are found, they are
#' treated as subharmonics. Note that this depends critically on accurate pitch
#' tracking.
#' @inheritParams analyzeFrame
#' @param pitch pitch per frame, Hz
#' @param pitchCands a list of pitch candidates and certainties sent from
#'   analyze()
#' @param method 'cep' = cepstrum, 'pitchCands' = existing pitch candidates
#'   below f0, 'harm' = look for harmonic peaks. Only 'cep' is really working at
#'   the moment.
#' @param nSubh the maximum ratio of f0 / g0 to consider
#' @param tol target frequency (eg f0 / 2) has to be within \code{tol * target}
#'   (eg tol = .05 gives a tolerance of 5\%)
#' @param nHarm for method 'harm' only
#' @inheritParams harmHeight
#' @keywords internal
#' @examples
#' s400 = soundgen(
#'   sylLen = 300, pitch = c(280, 370, 330),
#'   subDep = list(
#'     time = c(0, .5, .51, 1),
#'     value = c(0, 0, 10, 10)
#'   ), subRatio = 3,
#'   smoothing = list(interpol = 'approx'), formants = 'a',
#'   rolloff = -12, addSilence = 50, temperature = .001,
#' )
#' s = analyze(s400, samplingRate = 16000,
#'             windowLength =  50, step = 10,
#'             pitchMethods = c('dom', 'autocor', 'hps'), priorMean = NA,
#'             plot = TRUE, ylim = c(0, 3),
#'             extraContour = list('subDep', type = 'b', col = 'brown'))
#' s\$detailed[, c('subRatio', 'subDep')]
subhToHarm = function(
frame,
bin,
freqs,
pitch,
pitchCands = NULL,
samplingRate,
method = c('cep', 'pitchCands', 'harm'),
nSubh = 5,
tol = .05,
nHarm = 5,
harmThres = 3,
harmTol = 0.25
) {
# plot(frame, type = 'l')
best_subh = NA
subDep = 0
if (method == 'pitchCands' &
(is.null(pitchCands) || length(pitchCands\$freq) < 2)) {
method = 'cep'
}
if (method == 'pitchCands') {
ratios = data.frame(r = 1:nSubh, energy = NA)
for (r in 1:nSubh) {
pr = pitch / r
idx = which(abs(pitchCands\$freq - pr) / pr < tol)
if (length(idx) > 0) {
ratios\$energy[r] = mean(pitchCands\$cert[idx])
}
}
ratios\$extraEnergy = ratios\$energy - ratios\$energy / ratios\$r
subR = na.omit(ratios[ratios\$extraEnergy > 0, ])
if (nrow(subR) > 0) {
best_subh = subR\$r[which.max(subR\$extraEnergy)]
subDep = ratios\$extraEnergy[best_subh] / ratios\$energy[best_subh]
}
} else if (method == 'cep') {
# cepstrum
cep = abs(fft(as.numeric(log(frame))))
l = length(cep) %/% 2
cep = cep[1:l]
cep = 0
freqs_cep = samplingRate / (1:l) / 2
# plot(freqs_cep, cep, type = 'l', log = 'x')
bin_at_pitch = which.min(abs(freqs_cep - pitch))
nToTry = min(nSubh, floor(l / bin_at_pitch))
ratios = data.frame(r = 1:nToTry, energy = NA)
for (r in 1:nToTry) {
ratios\$energy[r] = max(cep[(bin_at_pitch * r - 1) : (bin_at_pitch * r + 1)])
}
ratios\$extraEnergy = ratios\$energy - ratios\$energy / ratios\$r
subR = na.omit(ratios[ratios\$extraEnergy > 0, ])
if (nrow(subR) > 0) {
best_subh = subR\$r[which.max(subR\$extraEnergy)]
subDep = ratios\$extraEnergy[best_subh] / ratios\$energy[best_subh]
}
} else if (method == 'harm') {
keep_idx = which(freqs < (pitch * nHarm))
frame = frame[keep_idx]
frame_dB = 20 * log10(frame[keep_idx])
freqs = freqs[keep_idx]
n = length(keep_idx)

# look for spectral peaks
temp = zoo::rollapply(zoo::as.zoo(frame_dB),
width = 3,  # parameter - see hps or smth
align = 'center',
function(x) {
isCentral.localMax(x, threshold = harmThres)  # another par
# plot(zoo::as.zoo(frame), type='l')
})
idx = zoo::index(temp)[zoo::coredata(temp)]
specPeaks = data.frame('idx' = idx)
nr = nrow(specPeaks)

# parabolic interpolation to get closer to the true peak
if (nr > 0) {
for (i in 1:nr) {
idx_peak = specPeaks\$idx[i]
applyCorrecton = idx_peak > 1 & idx_peak < n
if (applyCorrecton) {
threePoints = log10(frame[(idx_peak - 1) : (idx_peak + 1)])
parabCor = parabPeakInterpol(threePoints)
specPeaks\$freq[i] = freqs[idx_peak] + bin * parabCor\$p
specPeaks\$amp[i] = 10 ^ parabCor\$ampl_p
} else {
specPeaks\$freq[i] = freqs[idx_peak]
specPeaks\$amp[i] = frame[idx_peak]
}
}
# specPeaks[1:10, ]

idx_pitch = rep(NA, nHarm)
for (h in 1:nHarm) {
idx_range = pitch * h * c(1 - tol, 1 + tol)
peaks_range = which(specPeaks\$freq > idx_range &
specPeaks\$freq < idx_range)
lp = length(peaks_range)
if (lp == 1) {
idx_pitch[h] = specPeaks\$idx[peaks_range]
} else if (lp > 1) {
it = which.min(abs(specPeaks\$freq[peaks_range] - pitch * h))
idx_pitch[h] = specPeaks\$idx[peaks_range][it]
}
}
idx_pitch = as.numeric(na.omit(idx_pitch))
# plot(freqs, frame_dB, type = 'l')
# points(freqs[idx_pitch], frame_dB[idx_pitch], col = 'red', pch = 3)

# now repeat for different f0/g0 ratios
ratios = data.frame(r = 1:nSubh, energy = NA)
ratios\$energy = sum(frame[idx_pitch])
for (r in 2:nrow(ratios)) {
freq_max = pitch * nHarm * r
i_max = which(specPeaks\$freq > freq_max) - 1
if (!is.finite(i_max)) i_max = nrow(specPeaks)
h_max = floor(specPeaks\$freq[i_max] / pitch * r)
idx_pitch_r = rep(NA, h_max)
for (h in 1:h_max) {
pitch_h = pitch / r * h
idx_range = pitch_h * c(1 - tol, 1 + tol)
peaks_range = which(specPeaks\$freq > idx_range &
specPeaks\$freq < idx_range)
lp = length(peaks_range)
if (lp == 1) {
idx_pitch_r[h] = specPeaks\$idx[peaks_range]
} else if (lp > 1) {
it = which.min(abs(specPeaks\$freq[peaks_range] - pitch_h))
idx_pitch_r[h] = specPeaks\$idx[peaks_range][it]
}
}
idx_pitch_r = as.numeric(na.omit(idx_pitch_r))
ratios\$energy[r] = sum(frame[idx_pitch_r])
# plot(freqs, frame_dB, type = 'l')
# points(freqs[idx_pitch_r], frame_dB[idx_pitch_r], col = 'red', pch = 3)
}
# some harmonics repeat, eg for g0/2 and g0/4 - think about how to take this into account
ratios\$extraEnergy = ratios\$energy - ratios\$energy
if (nSubh > 3) ratios\$extraEnergy = ratios\$extraEnergy - ratios\$extraEnergy
# now we divide by subRatio b/c otherwise high subRatios are privileged (many
# more potential harmonics)
subR = na.omit(ratios[ratios\$extraEnergy > 0, ])
if (nrow(subR) > 0) {
best_subh = subR\$r[which.max(subR\$extraEnergy)]
subDep = ratios\$extraEnergy[best_subh] / ratios\$energy[best_subh]
}
}
}
return(list(subRatio = best_subh, subDep = subDep))
}
```

## Try the soundgen package in your browser

Any scripts or data that you put into this service are public.

soundgen documentation built on Aug. 14, 2022, 5:05 p.m.