Nothing
#' Get HNR
#'
#' Calculates the harmonics-to-noise ratio (HNR) - that is, the ratio between
#' the intensity (root mean square amplitude) of the harmonic component and the
#' intensity of the noise component. Normally called by \code{\link{analyze}}.
#'
#' @references Boersma, P. (1993). Accurate short-term analysis of the
#' fundamental frequency and the harmonics-to-noise ratio of a sampled sound.
#' In Proceedings of the institute of phonetic sciences (Vol. 17, No. 1193,
#' pp. 97-110).
#'
#' @param x time series (a numeric vector)
#' @param samplingRate sampling rate
#' @param acf_x pre-computed autocorrelation function of input \code{x}, if
#' already available
#' @param lag.min,lag.max minimum and maximum lag to consider when looking for
#' peaks in the ACF; lag.min = samplingRate/pitchCeiling, lag.max =
#' samplingRate/pitchFloor
#' @param interpol method of improving the frequency resolution by interpolating
#' the ACF: "none" = don't interpolate; "parab" = parabolic interpolation on
#' three points (local peak and its neighbors); "spline" = spline
#' interpolation; "sinc" = sin(x)/x interpolation to a continuous function
#' followed by a search for local peaks using Brent's method
#' @param wn window applied to \code{x} (unless acf_x is provided instead of x)
#' as well as to the sinc interpolation
#' @param idx_max (internal) the index of the peak to investigate, if already
#' estimated
#'
#' @return A list of three components: f0 = frequency corresponding to the peak
#' of the autocorrelation function; max_acf = amplitude of the peak of the
#' autocorrelation function on a scale of (0, 1); HNR = 10 * log10(x / (1 -
#' max_acf)).
#'
#' @export
#' @examples
#' signal = sin(2 * pi * 150 * (1:16000)/16000)
#' signal = signal / sqrt(mean(signal^2))
#' noise = rnorm(16000)
#' noise = noise / sqrt(mean(noise^2))
#' SNR = 40
#' s = signal + noise * 10^(-SNR/20)
#' soundgen:::getHNR(s, 16000, lag.min = 16000/1000,
#' lag.max = 16000/75, interpol = 'none')
#' soundgen:::getHNR(s, 16000, lag.min = 16000/1000,
#' lag.max = 16000/75, interpol = 'parab')
#' soundgen:::getHNR(s, 16000, lag.min = 16000/1000,
#' lag.max = 16000/75, interpol = 'spline')
#' soundgen:::getHNR(s, 16000, lag.min = 16000/1000,
#' lag.max = 16000/75, interpol = 'sinc')
getHNR = function(x = NULL,
samplingRate = NA,
acf_x = NULL,
lag.min = 2,
lag.max = length(x),
interpol = c('none', 'parab', 'spline', 'sinc')[4],
wn = 'hanning',
idx_max = NULL
) {
if (!is.null(x)) {
## calculate ACF
len = length(x)
half_len = floor(len / 2)
lag.min = round(lag.min)
lag.max = round(min(lag.max, half_len))
if (lag.min > half_len) stop('lag.min is too small')
if (lag.max <= lag.min) stop('lag.max must be > lag.min')
# prepare a windowing function
win = seewave::ftwindow(len, wn = wn)
# calculate ACF of the windowing function
sp_win = fft(win) / half_len
powerSpectrum_win = Re(sp_win * Conj(sp_win))
acf_win = Re(fft(powerSpectrum_win, inverse = TRUE))[seq_len(half_len)]
acf_win = acf_win / acf_win[1]
# plot(acf_win, type = 'l')
## calculate ACF of the windowed signal
sp_x = fft(x * win) / half_len
powerSpectrum_x = Re(sp_x * Conj(sp_x))
acf_x = Re(fft(powerSpectrum_x, inverse = TRUE))[seq_len(half_len)] / acf_win
acf_x = acf_x / acf_x[1]
} else {
if (is.null(acf_x))
stop('Please provide either signal (x) or its autocorrelation function (acf_x)')
}
# plot(acf_x[lag.min:lag.max], type = 'b')
## find the maximum and interpolate the ACF to improve resolution
if (is.null(idx_max)) {
idx_max = which.max(acf_x[lag.min:lag.max]) + lag.min - 1
}
# if (acf_x[idx_max] < 0) return(NA) # causes problems in getPitchAutocor()
if (interpol == 'none') {
max_acf = acf_x[idx_max]
} else if (interpol == 'parab') {
parabInterp = parabPeakInterpol(acf_x[(idx_max - 1) : (idx_max + 1)])
max_acf = parabInterp$ampl_p
idx_max = idx_max + parabInterp$p
} else if (interpol == 'spline') {
idx = max(lag.min, (idx_max - 10)) : min(lag.max, (idx_max + 10))
acf_ups = spline(acf_x[idx], n = length(idx) * 100)
idx_max_ups = which.max(acf_ups$y)
max_acf = acf_ups$y[idx_max_ups]
idx_max = idx[1] - 1 + acf_ups$x[idx_max_ups]
} else if (interpol == 'sinc') {
# apply a gaussian window to the sinc interpolation as a function of the
# distance from the max
half_len = min(250, length(acf_x) / 2)
idx_left = max(2, idx_max - half_len)
# max(2, idx_max - min(250, floor(length(acf_x) / 4)))
if (idx_max > idx_left) {
win_left = seewave::ftwindow((idx_max - idx_left) * 2, wn = wn)[seq_len(idx_max - idx_left)]
} else {
win_left = numeric(0)
}
idx_right = min(length(acf_x), idx_max + half_len)
# min(length(acf_x), idx_max + min(250, floor(length(acf_x) / 4)))
if (idx_right > idx_max) {
win_right = seewave::ftwindow(
(idx_right - idx_max) * 2, wn = wn)[(idx_right - idx_max) :
((idx_right - idx_max) * 2)]
} else {
win_right = numeric(0)
}
win = c(win_left, win_right)
# win = win / sum(win)
# plot(win)
acf_idx = idx_left:idx_right
# length(win)
# length(acf_idx)
if (FALSE) {
# visual check of sinc interpolation
d_new = data.frame(x = seq(lag.min, lag.max, by = .1))
for (i in seq_len(nrow(d_new))) {
d_new$y[i] = sum(acf_x[acf_idx] * sinc(d_new$x[i] - acf_idx) * win)
}
plot(lag.min:lag.max, acf_x[lag.min:lag.max])
points(d_new, type = 'l', col = 'blue')
}
# find max by using the sinc function in optimize (Brent 1973)
opt = optimize(function(j) {sum(acf_x[acf_idx] * sinc(j - acf_idx) * win)},
interval = c(idx_max - 2, idx_max + 2), maximum = TRUE)
# opt = optimize(function(j) {sum(acf_x[acf_idx] * sinc(j - acf_idx) * win)},
# interval = c(lag.min, lag.max), maximum = TRUE)
max_acf = opt$objective
idx_max = opt$maximum
}
if (max_acf > 1) {
max_acf = 1 / max_acf
}
f0 = samplingRate / idx_max
list(f0 = f0,
max_acf = max_acf,
HNR = to_dB(max_acf))
}
#' Height of harmonics
#'
#' Internal soundgen function
#'
#' Attempts to estimate how high harmonics reach in the spectrum - that is, at
#' what frequency we can still discern peaks at multiples of f0 or, for
#' low-pitched sounds, regularly spaced peaks separated by ~f0.
#' @inheritParams analyzeFrame
#' @param pitch the final pitch estimate for the current frame
#' @param harmThres minimum height of spectral peak, dB
#' @param harmPerSel the number of harmonics per sliding selection
#' @param harmTol maximum tolerated deviation of peak frequency from multiples
#' of f0, proportion of f0
#' @return Returns the frequency (Hz) up to which we find harmonics
#' @keywords internal
#' @examples
#' s = soundgen(sylLen = 400, addSilence = 0, pitch = 400, noise = -10,
#' rolloff = -15, jitterDep = .1, shimmerDep = 5, temperature = .001)
#' sp = spectrogram(s, samplingRate = 16000)
#' hh = soundgen:::harmHeight(sp[, 5], pitch = 400,
#' freqs = as.numeric(rownames(sp)) * 1000, bin = 16000 / 2 / nrow(sp))
#' hh
harmHeight = function(frame,
pitch,
bin,
freqs,
harmThres = 3,
harmTol = 0.25,
harmPerSel = 5) {
frame_dB = 20 * log10(frame)
# plot(freqs, frame_dB, type = 'l'); abline(v = pitch, col = 'blue')
# METHOD 1: look for peaks at multiples of f0
lh_peaks = harmHeight_peaks(frame_dB, pitch, bin, freqs,
harmThres = harmThres,
harmTol = harmTol,
plot = FALSE)
# METHODS 2 & 3: look for peaks separated by f0
lh2 = harmHeight_dif(frame_dB, pitch, bin, freqs,
harmThres = harmThres,
harmTol = harmTol,
harmPerSel = harmPerSel,
plot = FALSE)
lh = median(c(lh_peaks, lh2$lastHarm_dif, lh2$lastHarm_cep), na.rm = TRUE)
if (lh < pitch) lh = NA
list(harmHeight = lh,
harmHeight_peaks = lh_peaks,
harmHeight_dif = lh2$lastHarm_dif,
harmHeight_cep = lh2$lastHarm_cep,
harmSlope = lh2$harmSlope)
}
#' Height of harmonics: peaks method
#'
#' Internal soundgen function
#'
#' Estimates how far harmonics reach in the spectrum by checking how many
#' spectral peaks we can find close to multiples of f0.
#' @inheritParams harmHeight
#' @param plot if TRUE, produces a plot of spectral peaks
#' @keywords internal
harmHeight_peaks = function(frame_dB,
pitch,
bin,
freqs,
harmThres = 3,
harmTol = 0.25,
plot = FALSE) {
pitch_bin = round(pitch / bin)
len_frame = length(frame_dB)
harmSmooth = round(harmTol * pitch / bin) # from prop of f0 to bins
nHarm = floor((max(freqs) - harmSmooth * bin) / pitch)
peakFound = rep(FALSE, nHarm)
if (plot) plot(freqs, frame_dB, type = 'l')
for (h in 1:nHarm) {
# check f0 as well, otherwise may get 2 * f0 although f0 is also below thres
bin_h = round(pitch * h / bin)
# b/c of rounding error, and b/c pitch estimates are often slightly off, the
# true harmonic may lie a bit above or below this bin, so we search for a
# peak within harmSmooth of where we expect to find it
idx_peak = which.max(frame_dB[(bin_h - harmSmooth) : (bin_h + harmSmooth)])
bin_peak = bin_h + idx_peak - harmSmooth - 1
# compare the peak with the median over ±pitch to check whether the peak is
# prominent enough
idx_around = max(1, bin_h - pitch_bin) : (min(len_frame, bin_h + pitch_bin))
idx_around = idx_around[-h]
median_around = median(frame_dB[idx_around])
peakFound[h] = frame_dB[bin_peak] - median_around > harmThres
if (plot)
text(freqs[bin_peak], frame_dB[bin_peak], labels = h, pch = 5,
col = if (peakFound[h]) 'red' else 'blue')
}
if (any(peakFound)) {
absent_harm = which(!peakFound)
if (length(absent_harm) == 0) {
# just the last found harmonic peak
lastHarm = pitch * nHarm
} else {
# the last non-missing harmonic peak
lastHarm = pitch * (absent_harm[1] - 1)
}
} else {
lastHarm = NA
}
lastHarm
}
#' Height of harmonics: difference method
#'
#' Internal soundgen function
#'
#' Estimates how far harmonics reach in the spectrum by analyzing the typical
#' distances between spectral peaks in different frequency regions.
#' @inheritParams harmHeight
#' @param plot if TRUE, produces a plot of spectral peaks
#' @keywords internal
harmHeight_dif = function(frame_dB,
pitch,
bin,
freqs,
harmThres = 3,
harmTol = 0.25,
harmPerSel = 5,
plot = FALSE) {
# width of smoothing interval (in bins), forced to be an odd number
harmSmooth_bins = 2 * ceiling(pitch / bin / 2) - 1
# find peaks in the smoothed spectrum (much faster than seewave::fpeaks)
hb = floor(harmSmooth_bins / 2)
idx = which(vapply(
(hb + 1):(length(frame_dB) - hb), function(x) {
frx = frame_dB[(x - hb):(x + hb)]
frame_dB[x] == max(frx) && # peak in the middle
frame_dB[x] - median(frx[-(hb + 1)]) > harmThres # and above median w/o the center
}, logical(1))) + hb
nPeaks = length(idx)
# slide a selection along the spectrum starting from f0
pitch_bins = pitch / bin # f0 location in bins
# width of selection in bins (no more than half the frame len)
sel_bins = min(round(pitch_bins * harmPerSel), length(frame_dB) / 2)
harmTol_bins = round(pitch_bins * harmTol) # tolerated deviance in bins
i = pitch_bins # start at f0
pitch_bin_cep = pitch_bin_peaks = vector('logical', 0)
while (i + sel_bins < length(frame_dB)) {
end = i + sel_bins - 1
# count intervals b/w spectral peaks
d = diff(idx[idx >= i & idx <= end]) # distances b/w peaks
# median deviation of these distances from expected (f0)
dp = abs(median(d, na.rm = TRUE) - pitch_bins)
dp_within_tol = (dp < harmTol_bins)
pitch_bin_peaks = c(pitch_bin_peaks, dp_within_tol)
# cepstrum
sel = as.numeric(frame_dB[i:(i + sel_bins - 1)])
cep = abs(fft(sel))
# plot(sel, type = 'l')
l = length(cep) %/% 2
cep = cep[seq_len(l)]
# plot(cep, type = 'l')
bin_at_pitch = harmPerSel + 1
# Is there a local max at bin_at_pitch? Any height will do
peak_at_pitch = (.subset2(cep, bin_at_pitch) > .subset2(cep, bin_at_pitch - 1)) &&
(.subset2(cep, bin_at_pitch) > .subset2(cep, bin_at_pitch + 1))
pitch_bin_cep = c(pitch_bin_cep, peak_at_pitch)
i = round(i + pitch_bins) # move the sel by one harmonic (f0)
}
# Find the middle frequency of the first bin w/o harmonics
fbwh_peaks = .subset2(which(!pitch_bin_peaks), 1)
if (is.na(fbwh_peaks)) {
lastHarm_dif = nPeaks * pitch # found everywhere - take the top frequency, not middle
} else {
lastHarm_dif = (sel_bins / 2 + pitch_bins * (fbwh_peaks - 1)) * bin
}
if (!is.na(lastHarm_dif) && lastHarm_dif < pitch) lastHarm_dif = NA
fbwh_cep = .subset2(which(!pitch_bin_cep), 1)
if (is.na(fbwh_cep)) {
lastHarm_cep = nPeaks * pitch
} else {
lastHarm_cep = (sel_bins / 2 + pitch_bins * (fbwh_cep - 1)) * bin
}
if (!is.na(lastHarm_cep) && lastHarm_cep < pitch) lastHarm_cep = NA
# calculate harmonic slope
# (like spectral slope, but only for the confirmed harmonic peaks)
idx_harms = idx[which(pitch_bin_peaks & pitch_bin_cep)]
last_harm_bin = median(lastHarm_dif, lastHarm_cep, na.rm = TRUE) / bin
idx_harms = idx_harms[idx_harms < last_harm_bin]
if (length(idx_harms) > 1) {
harms = data.frame(freq = freqs[idx_harms] / 1000, ampl = frame_dB[idx_harms])
mod = suppressWarnings(lm(ampl ~ freq, harms))
harmSlope = mod$coefficients[2]
} else {
harmSlope = NA
}
if (plot) {
plot(freqs, frame_dB, type = 'l')
points(freqs[idx_harms], frame_dB[idx_harms], pch = 5, col = 'blue')
points(freqs[idx[!idx %in% idx_harms]],
frame_dB[idx[!idx %in% idx_harms]],
pch = 5, col = 'red')
abline(mod$coefficients[1], mod$coefficients[2] / 1000, lty = 2, col = 'blue')
}
list(lastHarm_cep = lastHarm_cep,
lastHarm_dif = lastHarm_dif,
harmSlope = harmSlope)
}
#' Energy in harmonics
#'
#' Internal soundgun function
#'
#' Calculates the % of energy in harmonics based on the provided pitch estimate
#' @param pitch pitch estimates, Hz (vector)
#' @param s spectrogram (ncol = length(pitch))
#' @param coef calculate above pitch * coef
#' @param freqs as.numeric(rownames(s)) * 1000
#' @keywords internal
harmEnergy = function(pitch, s, freqs = NULL, coef = 1.25) {
if (is.null(freqs)) freqs = as.numeric(rownames(s)) * 1000
out = rep(NA, length(pitch))
threshold = coef * pitch
idx_notNA = which(!is.na(threshold))
cs = colSums(s)
out[idx_notNA] = vapply(idx_notNA, function(x) {
sum(s[freqs > .subset2(threshold, x), x] / .subset2(cs, x))
}, numeric(1))
out
}
#' Subharmonics-to-harmonics ratio
#'
#' Internal soundgen function
#'
#' Looks for pitch candidates (among the ones already found if method =
#' 'pitchCands', or using some other pitch-tracking-like techniques such as
#' cepstrum) at integer ratios of f0. If such candidates are found, they are
#' treated as subharmonics. Note that this depends critically on accurate pitch
#' tracking.
#' @inheritParams analyzeFrame
#' @param pitch pitch per frame, Hz
#' @param pitchCands a list of pitch candidates and certainties sent from
#' analyze()
#' @param method 'cep' = cepstrum, 'pitchCands' = existing pitch candidates
#' below f0, 'harm' = look for harmonic peaks. Only 'cep' is really working at
#' the moment.
#' @param nSubh the maximum ratio of f0 / g0 to consider
#' @param tol target frequency (eg f0 / 2) has to be within \code{tol * target}
#' (eg tol = .05 gives a tolerance of 5\%)
#' @param nHarm for method 'harm' only
#' @inheritParams harmHeight
#' @keywords internal
#' @examples
#' \dontrun{
#' s400 = soundgen(
#' sylLen = 300, pitch = c(280, 370, 330),
#' subDep = list(
#' time = c(0, .5, .51, 1),
#' value = c(0, 0, 10, 10)
#' ), subRatio = 3,
#' smoothing = list(interpol = 'approx'), formants = 'a',
#' rolloff = -12, addSilence = 50, temperature = .001,
#' plot = TRUE, ylim = c(0, 2)
#' )
#' s = analyze(s400, samplingRate = 16000,
#' windowLength = 50, step = 10,
#' pitchMethods = c('dom', 'autocor', 'hps'), priorMean = NA,
#' plot = TRUE, ylim = c(0, 3),
#' extraContour = list('subDep', type = 'b', col = 'brown'))
#' s$detailed[, c('subRatio', 'subDep')]
#'
#' s2 = analyze(s400, samplingRate = 16000,
#' windowLength = 50, step = 10,
#' pitchMethods = c('dom', 'autocor', 'hps'), priorMean = NA,
#' subh = list(method = 'harm'),
#' plot = TRUE, ylim = c(0, 3),
#' extraContour = list('subDep', type = 'b', col = 'brown'))
#' s$detailed[, c('subRatio', 'subDep')]
#' }
getSHR = function(
frame,
bin,
freqs,
pitch,
pitchCands = NULL,
samplingRate,
method = c('cep', 'pitchCands', 'harm')[1],
nSubh = 5,
tol = .05,
nHarm = 5,
harmThres = 12,
harmTol = 0.25,
amRange = c(10, 200)
) {
# plot(freqs, log(frame), type = 'l')
best_subh = NA
subDep = 0
am = list(amFreq = NA, amDep = NA)
if (method == 'pitchCands' &
(is.null(pitchCands) || length(pitchCands$freq) < 2)) {
method = 'cep'
}
if (method == 'pitchCands') {
ratios = data.frame(r = 1:nSubh, energy = NA)
for (r in seq_len(nSubh)) {
pr = pitch / r
idx = which(abs(pitchCands$freq - pr) / pr < tol)
if (length(idx) > 0) {
ratios$energy[r] = mean(pitchCands$cert[idx])
}
}
ratios$extraEnergy = ratios$energy - ratios$energy[1] / ratios$r
subR = na.omit(ratios[ratios$extraEnergy > 0, ])
if (nrow(subR) > 0) {
best_subh = subR$r[which.max(subR$extraEnergy)]
subDep = ratios$extraEnergy[best_subh] / ratios$energy[best_subh]
}
} else if (method == 'cep') {
# cepstrum
cep = abs(fft(as.numeric(log(frame))))
l = length(cep) %/% 2
seq_len_l = seq_len(l)
cep = cep[seq_len_l]
cep[1] = 0
freqs_cep = samplingRate / seq_len_l / 2
# plot(freqs_cep, cep, type = 'b', log = 'x')
bin_at_pitch = which.min(abs(freqs_cep - pitch))
nToTry = min(nSubh, floor(l / bin_at_pitch))
ratios = data.frame(r = seq_len(nToTry), energy = NA)
for (r in ratios$r) {
ratios$energy[r] = max(cep[(bin_at_pitch * r - 1) : (bin_at_pitch * r + 1)])
}
if (FALSE) {
# we expect the cepstral peak to grow linearly with the density of
# harmonics, so eg twice as strong at 200 Hz as at 400 Hz. Thus, if some
# energy is present at f0/r, we penalize its apparent strength by r
a = rep(c(1, 0), 100)
max(abs(fft(a) / length(a))) # .5
b = rep(c(1, 0, 0, 0), 50)
max(abs(fft(b) / length(b))) # .25
c = rep(c(1, 0, 0, 0, 0, 0, 0, 0), 25)
max(abs(fft(c) / length(c))) # .125
}
ratios$expected = ratios$energy[1] / ratios$r
ratios$extraEnergy = ratios$energy - ratios$expected
subR = na.omit(ratios[ratios$extraEnergy > 0, ])
if (nrow(subR) > 0) {
best_subh = subR$r[which.max(subR$extraEnergy)]
subDep = ratios$extraEnergy[best_subh]/ratios$energy[best_subh]
subDep[subDep > 1] = 1
# ad hoc correction to linearize subDep - from simulations with known
# soundgen(subDep = ...), mod = nls(subDep ~ exp(b * m + c), data = out1,
# start = list(b = 1, c = 0)) See validate_subDep.R
subDep = exp(5 * subDep - 5)
}
## calculate AM (cepstral peaks in amRange not harmonically related to pitch)
# cancel pitch harmonics
cep1 = cep
for (i in seq_len(min(10, floor(l / bin_at_pitch)))) {
idx = which.min(abs(freqs_cep - pitch / i))
idx = c(idx, idx + 1, idx - 1)
idx = idx[idx > 1 & idx < l]
cep1[idx] = 0
}
# plot(freqs_cep, cep1, type = 'b', log = 'x')
# find peaks within amRange
idx_keep = which(freqs_cep >= amRange[1] & freqs_cep <= amRange[2])
b = data.frame(
idx = idx_keep,
freq = freqs_cep[idx_keep], # samplingRate / idx_keep * zp_corr, # smth fishy here...
cep = cep1[idx_keep]
)
# plot(b$freq, b$cep, type = 'l', log = 'x')
idx = which(diff(diff(b$cep) > 0) == -1) + 1
idx_am = idx[which.max(b$cep[idx])]
am = list(amFreq = b$freq[idx_am],
amDep = b$cep[idx_am] / cep[bin_at_pitch])
} else if (method == 'harm') {
am = list(amFreq = NA, amDep = NA)
keep_idx = which(freqs < (pitch * nHarm))
frame = frame[keep_idx]
frame = frame / max(frame)
frame_dB = 20 * log10(frame[keep_idx])
freqs = freqs[keep_idx]
n = length(keep_idx)
# plot(freqs[keep_idx], frame_dB, type = 'l')
# look for spectral peaks
hb = 1
idx_peaks = which(vapply(
(hb + 1):(length(frame_dB) - hb), function(x) {
frx = frame_dB[(x - hb):(x + hb)]
frame_dB[x] == max(frx) && ( # local maximum
(frame_dB[x] - min(frx) > harmThres) | # pronounced peak
(frame_dB[x] > -20) # or a strong freq bin relative to global max
)}, logical(1))) + hb
# plot(freqs, frame_dB, type = 'l')
# points(freqs[idx_peaks], frame_dB[idx_peaks], col = 'red', pch = 3)
specPeaks = data.frame('idx' = idx_peaks)
nr = nrow(specPeaks)
# parabolic interpolation to get closer to the true peak
if (nr > 0) {
for (i in seq_len(nr)) {
idx_peak = specPeaks$idx[i]
applyCorrecton = idx_peak > 1 & idx_peak < n
if (applyCorrecton) {
threePoints = log10(frame[(idx_peak - 1) : (idx_peak + 1)])
parabCor = parabPeakInterpol(threePoints)
specPeaks$freq[i] = freqs[idx_peak] + bin * parabCor$p
specPeaks$amp[i] = 10 ^ parabCor$ampl_p
} else {
specPeaks$freq[i] = freqs[idx_peak]
specPeaks$amp[i] = frame[idx_peak]
}
}
# specPeaks[1:10, ]
# indices of possible harmonics and subharmonics
ratios = data.frame(r = seq_len(nSubh), energy = NA)
bin_at_pitch = which.min(abs(freqs - pitch))
lf = length(frame)
for (r in ratios$r) {
nToTry = min(50, floor(lf / (bin_at_pitch / r)))
idx_h = amp_h = rep(0, nToTry)
for (h in seq_len(nToTry)) {
# bin_at_h = round(bin_at_pitch / r * h * c(1 - tol, 1 + tol))
# peaks_range = which(specPeaks$freq > freqs[bin_at_h[1]] &
# specPeaks$freq < freqs[bin_at_h[2]])
freq_range = pitch / r * h * c(1 - tol, 1 + tol)
peaks_range = which(specPeaks$freq > freq_range[1] &
specPeaks$freq < freq_range[2])
# specPeaks[peaks_range, ]
if (length(peaks_range) > 0) {
idx_h[h] = peaks_range[which.min(abs(specPeaks$freq[peaks_range] -
mean(freq_range)))]
amp_h[h] = specPeaks$amp[idx_h[h]]
}
}
if (r == 1) {
# save indices of f0 harmonics
idx_pitch = idx_h[idx_h > 0]
} else {
# exclude f0 harmonics
amp_h = amp_h[which(!idx_h %in% idx_pitch)]
}
if (length(amp_h) > 0)
ratios$energy[r] = mean(amp_h)
# thus: the "energy" is calculated as the mean amplitude of subharmonics
# (excluding f0 stack)
# plot(freqs, log(frame), type = 'l')
# points(specPeaks$freq[idx_h], log(specPeaks$amp[idx_h]), col = 'red', pch = 3)
}
# ratios = na.omit(ratios)
if (nrow(ratios) > 1) {
idx_best = which.max(ratios$energy[-1]) + 1
best_subh = ratios$r[idx_best]
subDep = ratios$energy[idx_best] / ratios$energy[1]
}
}
}
c(list(subRatio = best_subh, subDep = subDep), am)
}
#' Get flux from features
#'
#' Internal soundgen function
#'
#' Calculates the change in acoustic features returned by analyze() from one
#' STFT frame to the next. Since the features are on different scales, they are
#' normalized depending on their units (but not scaled). Flux is calculated as
#' mean absolute change across all normalized features. Whenever flux exceeds
#' \code{thres}, a new epoch begins.
#' @param an dataframe of results from analyze()
#' @param thres threshold used for epoch detection (0 - 1)
#' @param smoothing_ww if > 1, \code{\link{medianSmoother}} is called on input dataframe
#' @param plot if TRUE, plots the normalized feature matrix and epochs
#' @return Returns a data frame with flux per frame and epoch numbers.
#' @keywords internal
#' @examples
#' an = analyze(soundgen(), 16000)
#' fl = soundgen:::getFeatureFlux(an$detailed, plot = TRUE)
#' \dontrun{
#' # or simply:
#' an = analyze(soundgen(sylLen = 500), 16000, plot = TRUE, ylim = c(0, 8),
#' extraContour = 'flux', flux = list(smoothWin = 100, thres = .15))
#' }
getFeatureFlux = function(an,
thres = 0.1,
smoothing_ww = 1,
plot = FALSE) {
if (nrow(an) == 1) return(data.frame(frame = 1, flux = 0, epoch = 1))
# just work with certain "trustworthy" variables listed in soundgen:::featureFlux_vars
m = an[, match(featureFlux_vars$feature, colnames(an))]
# remove columns with nothing but NAs
nc = ncol(m)
idx = rep(FALSE, nc)
for (i in seq_len(nc)) idx[i] = any(is.finite(m[, i]))
col_keep = which(idx)
if (length(col_keep) < nc) m = m[, col_keep]
# log-transform features measured in Hz
for (i in seq_len(ncol(m))) {
if (featureFlux_vars$log_transform[i]) {
m[, i] = log2(m[, i] + 1) # +1 b/c otherwise 0 produces NA
}
}
# normalize according to unit of measurement (don't z-transform because then
# even uniform files will show spurious variation - the changes here should be
# absolute, not relative)
cm = colMeans(m, na.rm = TRUE)
cm[which(colnames(m) == 'voiced')] = 0 # voiced
for (i in seq_len(ncol(m))) {
# if (featureFlux_vars$feature[i] != 'voiced')
m[, i] = (m[, i] - cm[i]) / featureFlux_vars$norm_scale[i]
}
# m[is.na(m)] = 0 # NAs become 0 (mean)
m$voiced = as.numeric(m$voiced)
# summary(m)
# median smoothing
if (smoothing_ww > 1) {
m = medianSmoother(m, smoothing_ww = smoothing_ww, smoothingThres = 0)
}
# calculate the average change from one STFT frame to the next and segment into epochs
nFrames = nrow(m)
flux = rep(NA, nFrames)
epoch = rep(1, nFrames)
for (i in 2:nFrames) {
cor_i = cor(as.numeric(m[i, ]), as.numeric(m[i - 1, ]), use = 'complete.obs')
flux[i] = 1 - (cor_i + 1) / 2 # cor_i = -1 gives a flux of 1, 0 -> 0.5, 1 -> 1
if (is.finite(flux[i]) && flux[i] > thres) {
epoch[i] = epoch[i - 1] + 1
} else {
epoch[i] = epoch[i - 1]
}
}
# plotting
if (plot) {
transitions = which(diff(epoch) != 0) - 0.5
image(as.matrix(m))
points(seq(0, 1, length.out = length(flux)), flux, type = 'l')
if (length(transitions) > 0) {
for (t in transitions) abline(v = t / nFrames)
}
}
data.frame(frame = seq_len(nFrames), flux = flux, epoch = epoch)
}
#' Get spectral flux
#'
#' Internal soundgen function
#'
#' Calculates spectral flux: the average change across all spectral bins from
#' one STFT frame to the next. Spectra are normalized in each frame, so
#' amplitude changes have no effect on flux.
#' @return vector of length ncol(s)
#' @param s raw spectrogram (not normalized): rows = frequency bins, columns = STFT frames
#' @keywords internal
getSpectralFlux = function(s) {
# normalize
s = apply(s, 2, function(x) x / max(x)) # normalize
s[is.na(s)] = 0
nc = ncol(s)
flux = rep(0, nc)
for (c in 2:nc) flux[c] = mean(abs(s[, c] - s[, c - 1]))
# or as.numeric(dist(rbind(s[, c], s[, c - 1])))
flux
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.